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technical foundation for this remarkable progress is a special Feigin-Fuchs type represen-

tation which allows to keep the bosonic symmetry manifest instead of reducing it to free

fields. In preparation for the field theory analysis, we shall exploit a minisuperspace ana-

logue of the resulting free fermion construction to deduce the spectrum of the Laplacian

on type I supergroups. The latter is shown to be non-diagonalizable. After lifting these

results to the full WZNW model, we address various issues of the field theory, including its

modular invariance and the computation of correlation functions. In agreement with pre-

vious findings, supergroup WZNW models allow to study chiral and non-chiral aspects of

logarithmic conformal field theory within a geometric framework. We shall briefly indicate

how insights from WZNW models carry over to non-geometric examples, such as e.g. the

W(p) triplet models.
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1. Introduction

Two-dimensional non-linear σ-models on supermanifolds have been a topic of considerable

interest for the past few decades. Their realm of applications is vast, ranging from string

theory to statistical physics and condensed matter theory. In the Green-Schwarz or pure

spinor type formulation of superstring theory, for example, supersymmetries act geomet-

rically as isometries of an underlying space-time (target space) supermanifold. Important

examples arise in the context of AdS/CFT dualities between supersymmetric gauge theo-

ries and closed strings. Apart from string theory, supersymmetry has also played a major

role in the context of quantum disordered systems [1 – 4] and in models with non-local

degrees of freedom such as polymers [5]. In particular, it seems to be a crucial ingredient

in the description of the plateaux transitions in the spin [6, 7] and the integer quantum

Hall effect [8 – 10].

In addition to such concrete applications there exist a number of structural reasons to

be interested in conformal σ-models with target space (internal) supersymmetry. On the

one hand, being non-unitary, the relevant conformal field theory models exhibit rather un-

usual features such as the occurrence of reducible but indecomposable1 representations and

the existence of logarithmic singularities on the world-sheet. In this context, many concep-

tual issues remain to be solved, both on the physical and on the mathematical side. These

include, in particular, the construction of consistent local correlation functions [11], the

modular transformation properties of characters [12, 13], their relation to fusion rules [14 –

16], the treatment of conformal boundary conditions [17, 18] etc. On the other hand, the

special properties of Lie supergroups allow for constructions which are not possible for

ordinary groups. For instance, there exist several families of coset conformal field theories

that are obtained by gauging a one-sided action of some subgroup rather than the usual

adjoint [19 – 22]. The same class of supergroup σ-models is also known to admit a new

kind of marginal deformations that are not of current-current type [23, 24]. Finally, there

seems to be a striking correspondence between the integrability of these models and their

conformal invariance [25, 26, 21, 22].

In this note we will focus on the simplest class of two-dimensional conformal σ-models,

namely WZNW theories, in order to address some of the features mentioned above. The

two essential properties which facilitate an exact solution are (i) the presence of an extended

chiral symmetry based on an infinite dimensional current superalgebra2 and (ii) the inherent

geometric interpretation. While (ii) is common to all σ-models, the symmetries of WZNW

models are necessary to lift geometric insights to the full field theory. Both aspects single

out supergroup WZNW theories among most of the logarithmic conformal field theories

that have been considered in the past [27, 11, 28] (see also [29, 30] for reviews and further

1In contrast to some appearances in the physics literature we will use the word “indecomposable”

strictly in the mathematical sense. According to that definition also irreducible representations are always

indecomposable since they cannot be written as a direct sum of two other (non-zero) representations.
2Instead of referring to the names “Kac-Moody superalgebra” or even “affine Lie superalgebra” which

are frequently used in the physics community, we will stick to the notion current superalgebra by which we

mean a central extension of the loop algebra over a finite dimensional Lie superalgebra.
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references). While investigations of algebraic and mostly chiral aspects of supergroup

WZNW models reach back more than ten years [31 – 35] it was not until recently that

the use of geometric methods has substantially furthered our understanding of non-chiral

issues [36, 24, 37]. In the last three references the full non-chiral spectrum for the GL(1|1),
the PSU(1, 1|2) and the SU(2|1) WZNW models has been derived based on methods of

harmonic analysis. The most important discovery in these articles was the relevance of

so-called projective covers and the resulting non-diagonalizability of the Laplacian which

ultimately manifests itself in the logarithmic behaviour of correlation functions.

This paper will put these results on a more general and firm conceptual basis by

considering rather arbitrary supergroup WZNW models based on basic Lie superalgebras

of type I. The defining properties of these Lie superalgebras are (i) the existence of a non-

degenerate invariant form (not necessarily the Killing form) and (ii) the possibility to split

the fermionic generators into two multiplets which transform in dual representations of the

even subalgebra. The first feature is necessary to even spell out a Lagrangian for our models.

Our second requirement can be exploited to introduce a distinguished set of coordinates in

which the Lagrangian takes a particularly simple form. These arise from some Gauss-like

decomposition in which a bosonic group element is sandwiched between the two sets of

fermions. The construction resembles the ordinary free field constructions [38 – 43], but

involves no bosonic ghosts and turns out to be easier to deal with since the corresponding

Gauss decomposition is globally defined. We shall make no specific choice concerning the

coordinates on the bosonic subgroup so that the underlying bosonic symmetry is manifest

throughout our construction.3 The generators of the underlying current superalgebra of

our WZNW model are thus constructed from currents of the bosonic subalgebra along

with a number of free chiral fermionic ghost systems which equals the number of fermionic

generators.

As was observed in [24] already, at least for the example of PSU(1, 1|2), the free

fermion resolution described above provides a natural framework for the discussion of rep-

resentations, spectrum, characters and correlation functions, both in the full conformal

field theory and in its semi-classical subsector. In particular, it is possible to introduce the

notion of “Kac modules” for current superalgebras. These are obtained as a tensor product

of an irreducible highest weight representation of the (renormalized) bosonic subalgebra

and a Fock space for the free fermions. Exactly as their finite dimensional cousins, such

Kac modules turn out to be irreducible for generic (typical) choices of the highest weight.

Hence, their characters can be written down immediately and their behaviour under mod-

ular transformations is straightforward to derive. Though our presentation does not allow

to elaborate on the details without specifying a concrete model, we believe that techniques

similar to the ones used in [32, 24] also permit to derive characters for atypical irreducible

representations. The latter arise as quotients from reducible Kac modules and their char-

acters possess representations through infinite sums over characters of Kac modules. Such

formulas were shown in [32, 37] to provide easy access to modular properties of atypical

irreducibles.

3See [44, 45] for a related approach.
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If we restrict our attention to simple Lie superalgebras for a moment our analysis covers

three types of infinite series, namely A(m,n) = sl(m|n) (for m 6= n), A(n, n) = psl(n|n)

and C(n+1) = osp(2|2n) [46]. But, widening Kac’s original usage of the qualifiers “basic”

and “type I”, most of our results also apply to non-(semi)simple Lie superalgebras such

as various extended Poincaré superalgebras, the general linear Lie superalgebras gl(m|n)

or supersymmetric extensions of Heisenberg algebras.4 We wish to stress that our general

results below contain a solution of the PSL(n|n) WZNW models. What makes these

particularly interesting is the fact that their volume is an exact modulus, in contrast

to bosonic non-abelian WZNW models [23, 22]. It is also worth emphasizing that the

isometries of flat superspace, AdS-spaces and many projective superspaces fall into the

classes mentioned above. We thus expect our work to be relevant for these models as well.

A few comments in that direction can be found in the conclusions.

The plan of this paper is as follows. In the next section we shall provide a detailed

account of Lie superalgebras of type I and the associated representation theory. Particular

emphasis is put on the structure of projective modules, i.e. typical Kac modules and pro-

jective covers of atypical irreducible representations. Afterwards we present the supergroup

WZNW Lagrangian in section 3 and use a Gauss-like decomposition in order to rewrite it in

terms of a bosonic WZNW model, two sets of free fermions and an interaction term which

couples bosons and fermions. This free fermion resolution is shown to have an algebraic

analogue on the level of the current superalgebra which constitutes the symmetry of the

supergroup WZNW model. The analysis of the zero-mode spectrum in the large volume

sector is performed in section 4 using methods of harmonic analysis. Most importantly,

we shall determine the representation content for the combined left right regular action on

the algebra of functions over the supergroup. To achieve our goal, we use a reciprocity

between atypical irreducible representations and their projective covers. On the way we

also prove the occurrence of a sector on which the Laplacian is not diagonalizable. Af-

ter these preparations we extend the free fermion resolution to the full WZNW model in

section 5. We introduce an analogue of Kac modules suitable for infinite dimensional Lie

superalgebras and sketch the calculation of correlation functions. The latter are necessarily

logarithmic due to the non-diagonalizability of the dilatation operators L0 and L̄0. At the

end of section 5, we propose a universal partition function resembling a charge conjugate

invariant and gather some thoughts about the possibility of having non-trivial modular

invariant partition functions. In the concluding section 6 we argue that the solution of

the logarithmic triplet model [11] formally fits into the framework outlined before. This

observation is used to speculate about the structure of general logarithmic conformal field

theories.

Most of the statements which appear in the main text can be turned into mathemati-

cally rigorous propositions. This applies in particular to all algebraic manipulations. In our

discussion of spectra, however, we focus on models based on finite dimensional represen-

tations. The most interesting supergroups, on the other hand, are based on non-compact

4WZNW models based on Heisenberg algebras may be used to describe strings on maximally symmetric

plane waves [47, 48].

– 4 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
5

and occasionally on non-reducive groups. While we believe that our discussion may be ex-

tended to such cases, a fully comprehensive presentation would have required to carefully

distinguish between different real forms. In the present note, we rather preferred to put

the emphasis on the algebraic structures that — in our opinion — are equally relevant for

all type I supergroup WZNW models.

2. Some background on Lie superalgebras of type I

The main actress of this paper, the Lie supergroup G, is best introduced in terms of

its underlying Lie superalgebra g. We will assume the latter to be finite dimensional,

basic and of type I. The attribute “basic” guarantees the existence of a non-degenerate

invariant metric and is needed in order to exclude certain pathological cases which would

even rule out the existence of a WZNW Lagrangian. The predicate “type I”, on the other

hand, implies the existence of two multiplets of fermionic generators and will simplify the

interpretation of the chiral splitting in the conformal field theory we are considering.

In the remainder of this section we shall first present the commutation relations of a

general (possibly non-simple) basic Lie superalgebra of type I. Afterwards we summarize

their representation theory following the beautiful exposition of Zou [49] (see also [50]).

The reader who is not interested in the mathematical details might wish to skip over parts

of this section in the first reading.

2.1 Commutation relations

A Lie superalgebra g = g0 ⊕ g1 is a graded generalization of an ordinary Lie algebra [46].

There are even (or bosonic) generators Ki which form an ordinary Lie algebra g0, i.e. they

obey the commutation relations

[Ki,Kj] = if ij
l K

l , (2.1)

with structure constants that are antisymmetric in the upper indices and that satisfy

the Jacobi identity. In addition, type I Lie superalgebras possess two sets of odd (or

fermionic) generators Sa
1 and S2a, a = 1, . . . , r (generating g1) which transform in an r-

dimensional representation R of g0 and its dual R∗, respectively [51]. Rephrased in terms

of commutation relations, this statement may be expressed as

[Ki, Sa
1 ] = −(Ri)ab Sb

1 [Ki, S2a] = S2b (Ri)ba. (2.2)

The symbol Ri is an abbreviation for the representation matrix R(Ki). In a type I super-

algebra, the anti-commutators [Sa
1 , Sb

1] and [S2a, S2b] vanish identically [51]. On the other

hand, generators Sa
1 do not anti-commute with S2b. Before we are able to spell out their

commutation relations, we need to introduce the supersymmetric bilinear form

〈Ki,Kj〉 = κij 〈Sa
1 , S2b〉 = δa

b . (2.3)

We assume κij (not necessarily the Killing form) to be invariant with respect to g0 and,

moreover, to be non-degenerate such that its inverse κij exists. The latter is a crucial

ingredient in the definition

[Sa
1 , S2b] = −(Ri)ab κij Kj . (2.4)

– 5 –
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The structure constants which appear in this relation are uniquely determined by the

requirement that the metric (2.3) is invariant, i.e. 〈[X,Y ], Z〉 = 〈X, [Y,Z]〉. The supersym-

metry and non-degeneracy of the metric on the full Lie superalgebra g follow immediately

from the definition.

The commutation relations above preserve the fermion number #(Sa
1 )−#(S2a). Hence

g and also its universal enveloping superalgebra U(g) have a natural Z-grading (localized

in three degrees) which is consistent with the intrinsic Z2-grading [51]. It is this property

which distinguishes type I Lie superalgebras among all Lie superalgebras. Let us also

emphasize that the Cartan subalgebra of g will always be identified with that of g0 in what

follows. This will be important below when we introduce highest weight representations.

Before we end this subsection on the definition of type I superalgebras, let us reflect a

bit on how restrictive their structure is. In fact, in building a Lie superalgebra one cannot

just come up with any bosonic subalgebra g0 and hope to extend it by adding fermions

transforming in some representation R of g0. There is an additional constraint, namely the

graded Jacobi identity. While the latter is by assumption identically satisfied for g0 and the

mixed bosonic/fermionic commutators do not impose any new conditions, there is a non-

trivial restriction arising from the commutator [Sa
1 , [Sb

1, S2c]] and its cyclic permutations.

This leads to the requirement

(Ri)bc κij (Rj)ad + (Ri)ac κij (Rj)bd = 0 . (2.5)

An equivalent formulation is to demand that the quadratic Casimir vanishes on the sym-

metric part of the tensor product R ⊗ R. Alternatively, the constraint on the choice of R

may be rephrased by requiring that the tensor

Aab
cd = (Ri)ac κij (Rj)bd (2.6)

is antisymmetric in the upper two as well as the lower two indices. Although the prop-

erty (2.5) (or (2.6)) looks rather innocent it will be a crucial ingredient in many of the

equalities we shall encounter.

2.2 Representation theory

In the analysis of supergroup WZNW models there are a variety of representations of the

underlying Lie superalgebra which play a role. The aim of this section is to provide a brief

summary of the relevant modules of finite dimensional type I Lie superalgebras following

Zou’s exposition [49]. For definiteness, all the definitions and statements that follow below

will be formulated for finite dimensional representations. It is understood, though, that

our definitions can be extended to infinite dimensional representations (discrete and con-

tinuous) as well. Whether this is also true for their properties, however, remains to be

investigated.

2.2.1 Kac modules and their duals

Let us denote by Rep(g0) the set of isomorphism classes of irreducible representations of

the bosonic subalgebra g0. The basic building blocks in the representation theory of Lie

– 6 –
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superalgebras of type I are Kac modules Kµ, µ ∈ Rep(g0) [46, 51]. They are induced from

irreducible representations Vµ of the bosonic subalgebra g0. More precisely, the represen-

tation is extended by letting one multiplet of fermionic generators S2a act trivially on the

vectors v ∈ Vµ. The remaining states in the Kac module are then created by acting with

generators from the second multiplet of fermions, Sa
1 . From our verbal description we im-

mediately infer the decomposition of Kac modules with respect to the bosonic subalgebra,5

Kµ

∣∣
g0

= Vµ ⊗F =
⊕

ν

[
Kµ : Vν

]
0
Vν . (2.7)

Here and in what follows we assume all g0-modules to be fully reducible and denote the

resulting multiplicities in terms of the square bracket [M0 : N0]0 where M0 is an arbitrary

(fully reducible) g0-module and N0 an irreducible g0-module. The g0-module F =
∧

(Sa
1 )

appearing in the previous equation is the exterior (or Grassman) algebra generated by the

fermions Sa
1 . Its structure as a g0-module is determined by projecting tensor powers of the

module R∗ onto their fully anti-symmetric submodules,

F = V ∗
0 ⊕ R∗ ⊕

[
R∗ ⊗ R∗

]
antisym

⊕
[
R∗ ⊗ R∗ ⊗ R∗

]
antisym

⊕ · · · ⊕
[
(R∗)⊗r

]
antisym

. (2.8)

The n-fold tensor product here corresponds to a state involving n fermionic generators

Sai

1 , i = 1, . . . , n. The case of no fermionic generators leads to the one-dimensional trivial

representation V0 = V ∗
0 . It is obvious that the series will truncate after the r-th tensor

product since the fermionic generators Sa
1 anti-commute among themselves. Consequently,

the dimension of Kac modules is always given by dim(Kµ) = 2r dim(Vµ).

In close analogy to the previous definition we may also introduce dual Kac modules

K∗
µ by starting with the dual bosonic representation V ∗

µ = Vµ+ . Deviating from the above

construction we now let the first set of fermionic generators Sa
1 act trivially on the corre-

sponding vectors and use S2a to create new states. Since the two sets of fermionic generators

transform in dual representations the bosonic content is then obviously given by

K∗
µ

∣∣
g0

= V ∗
µ ⊗F∗ =

(
Vµ ⊗F

)∗
=

⊕
ν

[
K∗

µ : Vν

]
0
Vν . (2.9)

The dimensions of the modules Kµ and K∗
µ coincide and it may easily be seen that the

representations are indeed dual to each other.

Let us conclude the discussion of Kac modules with a short comment about the last

term in the fermionic representation F , eq. (2.8). Innocent as it seems, it is important to

stress that the highest component [R⊗r]antisym need not be the trivial g0-module V0 again,

even though it certainly is one-dimensional. The action of the bosonic subalgebra on this

space can be calculated explicitly,

Ki ·
(
S1

1 · · ·Sr
1

)
= −tr(Ri)S1

1 · · ·Sr
1 . (2.10)

In case g0 is semisimple, it admits a unique one-dimensional representation, namely the

trivial g0-module V0. Hence, we conclude that tr(Ri) = 0 for Lie superalgebras with a

semisimple bosonic subalgebra.

5In the following we shall refer to the right hand side of this equation and other restrictions of g-modules

to the bosonic subalgebra g0 as the “bosonic content”. Hence, this phrase is not related to the Z2-grading

of the representation space.
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2.2.2 Simple modules and their blocks

Kac modules provide an important intermediate step to constructing irreducible represen-

tations. Finding their exact relation with irreducibles, however, requires good control over

the structure of Kac modules. For generic labels µ, the (dual) Kac modules turn out to be

irreducible. Thereby, they give rise to what is known as typical irreducible representations

Lµ = Kµ. But there exist special values of µ for which the associated Kac module contains

a proper invariant subspace. The so-called atypical irreducible representations Lµ are ob-

tained from such Kµ by factoring out the unique maximal invariant submodule [51]. In

contrast to the typical case, it is not straightforward to give a general formula for the di-

mension or the bosonic content of atypical irreducible representations, see however [49, 52].

As will be explained below the representations L0 as well as LR and L∗
R = LR∗ are always

atypical.

We shall assume that all irreducible representations of our type I superalgebra g emerge

as (possibly trivial) quotients of Kac modules (cf. [51]). In other words, the set Rep(g) of

isomorphism classes (or labels) of irreducible g-modules agrees with the one of its bosonic

subalgebra, i.e. Rep(g) = Rep(g0). According to our previous remarks, it splits into two

disjoint sets, Rep(g) = Typ(g) ∪ Atyp(g), containing typical and atypical labels, respec-

tively.

Simple modules of a Lie superalgebra can be grouped into so-called blocks. By defini-

tion, blocks are the parts of the finest partition of Rep(g) such that two simple modules

belong to the same part as soon as they have a non-split extension (see, e.g., [53]). An

intuitive way of understanding this definition is to view the simple modules as vertices in

a graph. There exists an edge between two vertices if and only if the corresponding simple

modules admit a non-split extension. In this picture, the blocks correspond to connected

components of the full graph. The property “being connected” defines an equivalence rela-

tion ∼ on Rep(g). We will use the notation Γ(g) = Rep(g)/ ∼ for the set of all blocks and

[σ] ∈ Γ(g) for individual blocks. Notice that each typical module forms a block by itself.6

Atypical irreducible representations, on the other hand, form constituents of larger blocks.

This implies the decomposition Γ(g) = Γtyp(g) ∪ Γatyp(g) where Γtyp(g) = Typ(g).

It is easy to argue that each Lie superalgebra of type I possesses a (probably infinite)

block [0] containing the trivial representation. Atypicality of the one-dimensional trivial

representation already follows on dimensional grounds since the dimension of Kac modules

is always a multiple of 2r. Let us continue to show that the representations LR and

L∗
R

∼= LR∗ which are based on the g0-modules R and R∗ lie in the same block [0]. It is

straightforward to see that L0 is obtained as a quotient from the Kac module K0 where

the subscript 0 refers to the trivial g0-module. In order to prove the atypicality of LR we

consider the states in K0 which are obtained from the ground state by applying precisely one

fermionic generator. These states transform in the representation R of g0. Since the Kac

module K0 is atypical and its irreducible quotient is of dimension one, this representation

has to decouple, i.e. the fermionic generators S2a have to annihilate these states. We

observe that the representation R can be part of at least two different supermultiplets: it

6This statement only holds in this form if we restrict ourselves to finite dimensional representations.
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may be used to define a Kac module KR and it generates a submodule QR of K0. In both

cases, the highest weight conditions are exactly identical. But obviously the dimensions of

QR and KR do not coincide since dimQR < dimK0 < dimKR. Hence, QR has to be a

non-zero quotient of KR, proving the atypicality of the latter. The same reasoning could

be repeated with at least one of the g0-modules which appear in the (dual) Kac modules

KR and KR∗ and so on. Thereby we construct a presumably infinite chain of atypical

representations Lµ in the block [0]. The labels that are included in this block all appear

in the decomposition of the tensor products R⊗m ⊗ (R∗)⊗n for arbitrary powers m and n

(the converse is not true, of course).

2.2.3 Projective modules

Lie superalgebras possess a whole zoo of representations which cannot be decomposed into

a direct sum of irreducibles. We shall see some important examples momentarily. Let us

recall before that any g-module M possesses a composition series. The latter is determined

by a special kind of filtration, in the present case an ascending set of submodules Mi,

i = 0, . . . , n where M0 = 0 and Mn = M , such that the quotients Mi/Mi−1 are simple

modules. We will denote by [M : Lµ] the number of irreducible g-modules Lµ in this

composition series of M .

The most interesting class of indecomposables consists of the so-called projective covers

Pµ of irreducibles Lµ. The module Pµ is defined to be the unique indecomposable projective

module that contains the irreducible representation Lµ as its head.7 By definition, the head

of a representation is the quotient by its maximal proper submodule. For typical labels

one has the equivalences Lµ
∼= Kµ

∼= Pµ. For atypical labels, however, irreducible modules,

Kac modules and projective covers are all inequivalent. In particular, they possess different

dimensions.

All projective modules P of a type I superalgebra are known to possess a Kac composi-

tion series [49], i.e. a filtration in terms of submodules whose quotients are Kac modules.8

We denote by (P : Kλ) the number of Kac modules Kλ in the Kac composition series of

P. In order to describe the precise structure of indecomposable projective modules we will

rely on the following reciprocity theorem [49, Theorem 2.7] (see also [50])

(
Pµ : Kλ

)
=

[
Kλ : Lµ

]
. (2.11)

This important equation relates the multiplicities of Kac modules in the Kac composition

series of a projective cover to the multiplicity of irreducible representations arising in the

composition series of Kac modules. Hence, the structure of projective covers is completely

determined by that of Kac modules. The statement is trivial for typical labels but it

contains valuable information in the atypical case. Note that a small technical assumption

underlying Zou’s proof of eq. (2.11) seems to be overcome if one uses the approach of [50].

7The attribute “projective” is used here in the sense of category theory and should not be confused with

the notion of projective representations that is used when algebraic relations are only respected up to some

multipliers (cocycles).
8It should be stressed that this property is not true for type II Lie superalgebras. A counter-example is

provided by D(2, 1; α) whose representation category is discussed in [54].

– 9 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
5

There is one simple construction that is guaranteed to furnish projective modules and

it is exactly this construction through which the latter will enter in our harmonic analysis

later on. The idea is to induce representations from irreducible representations Vµ of g0 by

letting both sets of fermionic generators Sa
1 and S2a act non-trivially, i.e.

Bµ = Indg

g0
(Vµ) . (2.12)

These modules are projective and reducible [49]. Indeed, under reasonable assumptions

on g0 all finite dimensional g0-modules are projective, and this property is preserved by

induction. For later use, let us write down the decomposition of the representations Bµ

into their indecomposable building blocks. We start with the observation that their bosonic

content is given by

Bµ

∣∣
g0

= Vµ ⊗F ⊗ F∗ . (2.13)

Using a suitable rearrangement of these factors it is obvious that the multiplicities of Kac

modules in the Kac composition series of Bµ are given by (Bµ : Kν) = [K∗
µ+ : Vν ]0. For

the actual decomposition into indecomposables we use our knowledge that Bµ is projective.

This implies that it may be written as a direct sum of (typical) irreducible Kac modules and

(atypical) projective covers. While nothing remains to be done for typical representations,

the correct description of the atypical sector requires combining the corresponding (non-

projective) Kac modules into projective covers. In order to achieve this goal we note the

equality [K∗
µ+ : Vν ]0 = [K∗

ν : Vµ+ ]0 which holds because both sides correspond to the number

of g0-invariants in the tensor product Vµ ⊗ V ∗
ν ⊗F∗. Now we can use the following simple

consequence of the duality relation (2.11),

[K∗
µ+ : Vν ]0 =

[
K∗

ν : Vµ+

]
0

=
∑

σ

[
K∗

ν : L∗
σ

] [
L∗

σ : Vµ+

]
0

=
∑

σ

(
Pσ : Kν

) [
L∗

σ : Vµ+

]
0
,

(2.14)

to arrive at the final result

Bµ =
⊕

ν∈Typ(g)

[
K∗

µ+ : Vν

]
0
Kν ⊕

⊕

σ∈Atyp(g)

[
L∗

σ : Vµ+

]
0
Pσ. (2.15)

This formula will be one of the main ingredients in the harmonic analysis to be performed

below in section 4.2. It is interesting to note that every indecomposable projective module

arises as a subspaces of some Bµ [49]. This means that the category of representations

considered here “contains enough projectives”.

Let us elaborate a bit more on the distinguished role that projective modules — direct

sums of typical irreducibles and projective covers of atypical irreducibles — play for the

representation theory of Lie superalgebras. In fact, in many ways they take over the role of

irreducible representations in the theory of ordinary Lie algebras. Most importantly, it can

be shown that the tensor product of any module with a projective one is projective again.

In other words, projective modules form an ideal in the representation ring. Moreover, the

Clebsch-Gordon decomposition for tensor products of projective modules can be determined

through a variant of the Racah-Speiser algorithm. Consider for instance two projective g-

modules A1 and A2. Being projective, they have a Kac composition series and hence their
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bosonic content is given by

Ai

∣∣
g0

=
∑

µ
miµVµ ⊗F . (2.16)

For the bosonic content of the tensor product A1 ⊗ A2 this implies

(
A1 ⊗ A2

)∣∣
g0

=
∑

µ
m1µm2ν

[
Vµ ⊗ Vν ⊗F

]
⊗F . (2.17)

The last F should be interpreted as the fermionic factor that is guaranteed to be present

in every projective module, due to the fact that they possess a Kac composition series. All

we need to do is to decompose the factor Vµ ⊗Vν ⊗F into irreducibles of g0. This provides

us with a list of all Kac modules in A1 ⊗ A2 along with their multiplicities. Typical

Kac modules correspond to irreducible representations appearing in the tensor product

while atypical Kac modules must be re-combined into projective covers. This final step is

performed based on formula (2.11) and it leads to an unambiguous result. Our discussion

shows how the Clebsch-Gordon decomposition of the tensor product A1⊗A2 may be played

back to the bosonic subalgebra. The decomposition of Vµ ⊗ Vν ⊗ F can be tackled with

the usual algorithmic tools from the representation theory of Lie algebras.

2.2.4 The quadratic Casimir element

One of the most important objects in representation theory are the Casimir elements, i.e.

elements of the center of the universal enveloping algebra U(g). For our concrete choice of

generators and invariant form we have a natural quadratic Casimir

C = KiκijK
j − Sa

1S2a + S2aS
a
1 . (2.18)

It may easily be checked that this operator acts as a scalar on Kac modules Kµ. For a

vector v ∈ Vµ in the defining irreducible bosonic multiplet one finds

Cv =
(
CB − tr(Ri)κij Kj

)
v , (2.19)

where CB = KiκijK
j is the quadratic Casimir of g0 associated to its non-degenerate metric.

Since the second term inside the bracket commutes with g0 as well, the irreducibility of Vµ

implies that C acts as a scalar on the whole multiplet Vµ. Using the commutativity of C

with g, this action may be extended to the complete Kac module Kµ. We will denote the

corresponding eigenvalue of the Casimir by Cµ = C(Kµ). Because irreducible g-modules

are defined as a quotient of Kac modules this immediately implies C(Lµ) = C(Kµ).

The observation that several representations may have the same Casimir eigenvalues

can be seen to generalize. In fact, it just takes a moment of thought to convince oneself

that one has Cµ = Cν (and the same for other Casimirs) whenever the simple modules

belong to the same block, µ ∼ ν. It seems plausible that also the converse holds, i.e. that

the set of Casimir operators may be used to separate different blocks. If this assertion was

true, then choosing µ and ν from different blocks, one would be able to find a Casimir (not

necessarily quadratic) whose eigenvalues on Lµ and Lν disagree.
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The previous comment that Casimir eigenvalues are constant on blocks has interesting

implications for indecomposables. By definition, the composition series of an indecompos-

able contains irreducibles belonging to one and the same block. Therefore, within any inde-

composable, no matter how complicated it is, all generalized eigenvalues of the Casimir el-

ements are the same. The additional qualifier “generalized” is necessary because a Casimir

element need not be diagonalizable when evaluated in an indecomposable representation.

This phenomenon is particularly common for the projective covers of atypicals. We shall

see later that — at least for a type I Lie superalgebra — the quadratic Casimir (2.18)

cannot be diagonalized in any of the projective covers Pµ.9 Furthermore, there exists at

least one series of projective covers, the ones associated to the block [0] ∈ Γ(g) of the trivial

representation, for which the generalized eigenvalues, i.e. the diagonal entries in the Jordan

block, vanish identically.10

3. The supergroup WZNW model and its symmetries

In this section we will introduce the WZNW model using its Lagrangian formulation. We

will employ a Gauss-like decomposition in order to rewrite the Lagrangian in terms of a

bosonic WZNW model, a free fermion theory and an interaction term. We then describe

the infinite dimensional current superalgebra of the model and explain how the latter

may be reconstructed from the free fermion resolution introduced before. Let us stress

that, contrary to ordinary free field approaches which also dissect the bosonic degrees of

freedom [38 – 43], our approach keeps the full bosonic symmetry manifest at all times. It

reduces the problem of solving the supergroup WZNW model to a solution of the underlying

bosonic model.

3.1 The Lagrangian description

Given the Lie superalgebra g as defined in (2.1)-(2.4), we can combine its generators with

elements of a Grassmann algebra in order to obtain a Lie algebra which can be exponen-

tiated. In physicist’s manner we shall define the supergroup G to be given by elements

g = eθ gB eθ̄ (3.1)

with θ = θaS2a and θ̄ = θ̄bS
b
1 (this parametrization has been termed “chiral superspace”

in [55]). The coefficients θa and θ̄b are independent Grassmann variables while gB denotes

an element of the bosonic subgroup GB ⊂ G obtained by exponentiating the Lie algebra

generators Ki. The attentive reader may have noticed that the product of two such su-

pergroup elements (3.1) will not again give a supergroup element of the same form. We

shall close an eye on such issues. For us, passing through the supergroup is merely an

auxiliary step that serves the purpose of constructing a WZNW-like conformal field theory

9Diagonalizability might be true for other Casimir operators though. For gl(1|1), for example, the

Casimir element E2 is diagonalizable in all weight modules. Note however that E2 is not related to a

non-degenerate invariant form as in eq. (2.18).
10Certain type II superalgebras such as e.g. D(2, 1; α) are known to also possess projective covers with

non-vanishing generalized eigenvalues [54].
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with Lie superalgebra symmetry. Since Lie superalgebras do not suffer from problems with

Grassmann variables, the resulting conformal field theory will be well-defined.

The WZNW Lagrangian for maps g : Σ2 → G from a two-dimensional Riemann surface

Σ2 to the supergroup G is fully specified in terms of the invariant metric on g and it reads

SWZNW[g] = − i

4π

∫

Σ2

〈g−1∂g, g−1∂̄g〉 dz ∧ dz̄ − i

24π

∫

B3

〈g−1dg, [g−1dg, g−1dg]〉 . (3.2)

The second term is integrated over an auxiliary three-manifold B3 which satisfies ∂B3 =

Σ2. Note that the measure idz ∧ dz̄ is real. The topological ambiguity of the second

term possibly imposes a quantization condition on the metric 〈·, ·〉 or, more precisely,

on its bosonic restriction, in order to render the path integral well-defined.11 Given the

parametrization (3.1), the Lagrangian can be simplified considerably by making iterative

use of the Polyakov-Wiegmann identity

SWZNW[gh] = SWZNW[g] + SWZNW[h] − i

2π

∫
〈g−1∂̄g, ∂hh−1〉 dz ∧ dz̄ . (3.3)

The WZNW action evaluated on the individual fermionic bits vanishes because the invariant

form (2.3) is only supported on grade 0 of the Z-grading. The final result is then

SWZNW[g] = SWZNW[gB , θ] = SWZNW[gB ] − i

2π

∫
〈∂̄θ, gB ∂θ̄ g−1

B 〉 dz ∧ dz̄. (3.4)

For the correct determination of the mixed bosonic and fermionic term it was again nec-

essary to refer to the grading of g. The latter implies for instance that the scalar product

vanishes if bosonic generators are paired with fermionic ones.

It is now crucial to realize (see also [36, 24]) that we may pass to an equivalent de-

scription of the WZNW model above by introducing an additional set of auxiliary fields pa

and p̄a,

S[gB , p, θ] = SWZNW
ren [gB ] + Sfree[θ, θ̄, p, p̄] + Sint[gB , p, p̄]

= SWZNW
ren [gB ] +

i

2π

∫ {
〈p, ∂̄θ〉 − 〈p̄, ∂θ̄〉 − 〈p, gB p̄ g−1

B 〉
}

dz ∧ dz̄.
(3.5)

Here, θ, θ̄ and our new fermionic fields p = paS
a
1 and p̄ = p̄aS2a all take values in the Lie

superalgebra g. Our conventions may look slightly asymmetric but as we will see later this

just resembles the asymmetry in the parametrization (3.1). Up to certain subtleties that

are encoded in the subscript “ren” of the first term, it is straightforward to see that we

recover the original Lagrangian (3.4) upon integrating out the auxiliary fields p and p̄.

Let us comment a bit more on each term in the action (3.5). Most importantly, we need

to specify the renormalization of the bosonic WZNW model which results from the change

11Note that for WZNW models based on bosonic groups one usually explicitly introduces an integer

valued constant, the level, which appears as a prefactor of the Killing form. For supergroups the Killing

form might vanish. Hence there is no canonical normalization of the metric. Moreover, we would like to

include models whose metric renormalizes non-multiplicatively (see below). Under these circumstances it is

not particularly convenient to display the level explicitly and we assume instead that all possible parameters

are contained in the metric 〈·, ·〉.
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in the path integral measure (cf. [56]). The computation of the relevant Jacobian has two

important effects. First of all, it turns out that the construction of the purely bosonic

WZNW model entering the action (3.5) employs the following renormalized metric12

〈Ki,Kj〉ren = κij − γij with γij = tr(RiRj). (3.6)

Note that this renormalization is not necessarily multiplicative. For simple Lie superal-

gebras the renormalized metric is always identical to the original one up to a factor. For

non-simple Lie superalgebras, however, this is generically not the case as can be inferred

from the example of gl(1|1).
As a second consequence of the renormalization, the action (3.5) may contain a Fradkin-

Tseytlin term, coupling a non-trivial dilaton to the world-sheet curvature R(2),

SWZNW
FT [gb] =

∫

Σ2

d2σ
√

hR(2)φ(gB) where φ(gB) = −1

2
ln detR(gB). (3.7)

The same kind of expression has already been encountered in the investigation of the

GL(1|1) WZNW model, cf. [31, 32, 36]. From the discussion at the end of section 2.2.1

it is obvious that φ vanishes whenever g0 is a semisimple Lie algebra. Therefore, a non-

trivial dilaton is a feature of the series osp(2|2n), sl(m|n) and gl(m|n) or, in other words,

of most basic Lie superalgebras of type I. The precise reason for the claimed form of

renormalization, i.e. the modification of the metric and the appearance of the dilaton, will

become clear in the following sections when we discuss the full quantum symmetry of the

supergroup WZNW model. At the moment let us just restrict ourselves to the comment

that the dilaton is required in order to ensure the supergroup invariance of the path integral

measure for the free fermion resolution, i.e. the description of the WZNW model in terms

of the Lagrangian (3.5).

Before we conclude this subsection, let us quickly return to the fermionic terms of the

Lagrangian (3.5) which may be rewritten in an even more explicit form using

gB p̄ g−1
B = gB S2b p̄b g−1

B = S2a Ra
b(gB) p̄b. (3.8)

The result for the interaction term is

Sint[gB , p, p̄] = − i

2π

∫
pa Ra

b(gB) p̄b dz ∧ dz̄. (3.9)

In an operator formulation, the object Ra
b(gB) should be interpreted as a vertex operator

of the bosonic WZNW model, transforming in the representation R⊗R∗. We may consider

the interaction term pa Ra
b(gB) p̄b as a screening current. Note that the latter is non-chiral

by definition, a feature that is not really specific to supergroups but applies equally to

bosonic models. Nevertheless, the existing literature on free field constructions did not

pay much attention to this point. Actually, the distinction is not really relevant for purely

bosonic WZNW models because of their simple factorization into left and right movers. In

the present context, however, a complete non-chiral treatment must be enforced in order

to capture and understand the special properties of supergroup WZNW models.

12We assume this metric to be non-degenerate. Otherwise we would deal with what is known as the

critical level or, in string terminology, the tensionless limit.
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3.2 Covariant formulation of the symmetry

It is well known that the full WZNW model exhibits a loop group symmetry. More precisely,

the Lagrangian (3.2) (and hence also the functional (3.5)) is invariant under multiplication

of the field g(z, z̄) with holomorphic elements from the left and with antiholomorphic

elements from the right. Infinitesimally, each of these transformations generates an infinite

dimensional current superalgebra, a central extension ĝ of the loop superalgebra belonging

to g. For the holomorphic sector the latter is equivalent to the following operator product

expansions (OPEs). In the bosonic subsector we find

Ki(z)Kj(w) =
κij

(z − w)2
+

if ij
l K

l(w)

z − w
. (3.10)

The transformation properties of the fermionic currents are

Ki(z)Sa
1 (w) = −(Ri)ab Sb

1(w)

z − w
and Ki(z)S2a(w) =

S2b(w) (Ri)ba

z − w
. (3.11)

Finally we need to specify the OPE of the fermionic currents,

Sa
1 (z)S2b(w) =

δa
b

(z − w)2
− (Ri)ab κij Kj(w)

z − w
. (3.12)

The previous operator product expansions are straightforward extensions of the commuta-

tion relations (2.1), (2.2) and (2.4). The central extension is determined by the invariant

metric (2.3).

The current superalgebra above defines a chiral vertex algebra via the Sugawara con-

struction [57]. As usual, the corresponding energy momentum tensor is obtained by con-

tracting the currents with the inverse of a distinguished invariant and non-degenerate met-

ric. The appropriate fully renormalized (hence the subscript “full-ren”) metric is defined

by

〈Ki,Kj〉full-ren = (Ω−1)ij = κij − γij − 1

2
f im

n f jn
m

〈Sa
1 , S2b〉full-ren = (Ω−1)ab = δa

b + (RiκijR
j)ab

(3.13)

and it is the result of adding half the Killing form of the Lie superalgebra g to the original

classical metric (2.3).13 Note that some of the terms in the fully renormalized metric (3.13)

can be identified with the (partially) renormalized metric (3.6) which we introduced while

deriving the free fermion Lagrangian. The energy momentum tensor of our theory involves

the inverse of the fully renormalized metric,

T =
1

2

[
Ki Ωij Kj − Sb

1Ω
a
bS2a + S2aΩ

a
bS

b
1

]
. (3.14)

Both, currents and energy momentum tensor, may similarly be defined for the antiholo-

morphic sector. The appearance of a renormalized metric in the Sugawara construction is

13Again, this renormalization does not need to be multiplicative, see for instance GL(1|1).
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a rather common feature. Supergroup WZNW models are certainly not exceptional in this

respect.

In order to complete the discussion of the operator content, we have to introduce

vertex operators Φ(M)(z, z̄). The latter carry a representation M of g ⊕ g, the underlying

horizontal part of the current superalgebra of our model. If we assume for a moment that

M = (µν) where µ and ν refer to Kac modules of the individual factors in g ⊕ g then

primary fields are characterized by the operator products

Ki(z)Φ(µν)(w, w̄) = −D(µ)(Ki)Φ(µν)(w, w̄)

z − w
S2a(z)Φ(µν)(w, w̄) = 0 (3.15)

K̄i(z̄)Φ(µν)(w, w̄) =
Φ(µν)(w, w̄)D(ν)(Ki)

z̄ − w̄
S̄a

1 (z̄)Φ(µν)(w, w̄) = 0. (3.16)

In addition, there are fields (Sa1
1 · · ·Sas

1 S̄2b1 · · · S̄2bt
Φ(µν))(z, z̄) which belong to the same

representation of the horizontal subsuperalgebra. The matrices D(µ) are representation

matrices of g0. As usual we may infer the conformal dimension of the primary fields from

their operator product expansion with the energy momentum tensor,

T (z)Φ(µν)(w, w̄) =
h(µν) Φ(µν)(w, w̄)

(z − w)2
+

∂Φ(µν)(w, w̄)

z − w

T̄ (z̄)Φ(µν)(w, w̄) =
h̄(µν) Φ(µν)(w, w̄)

(z − w)2
+

∂̄Φ(µν)(w, w̄)

z̄ − w̄
.

(3.17)

Using the standard techniques one easily finds that the conformal dimensions are given by

(renormalized) Casimir eigenvalues,

h(µν) =
1

2
C full-ren

µ h̄(µν) =
1

2
C full-ren

ν . (3.18)

The corresponding Casimir is given by C full-ren = KiΩijK
j + tr(ΩRi)κijK

j and should

be thought of as a renormalization of eq. (2.19). It is important to stress once more that

in our conventions the level is contained implicitly in the metric κij . Thus the conformal

dimensions depend on the level. They vanish if the metric of the supergroup is scaled

to infinity. In that limit the ground state sector decouples, and it can be analyzed using

methods of harmonic analysis. This will be carried out in section 4.

3.3 Free fermion resolution

Our next aim is to describe the current superalgebra defined above and the associated

primary fields in terms of the decoupled system of bosons and fermions that appear in the

Lagrangian (3.5). As one of our ingredients we shall employ the bosonic current algebra

Ki
B(z)Kj

B(w) =
(κ − γ)ij

(z − w)2
+

if ij
l K

l
B(w)

z − w
, (3.19)

which is defined using the (partially) renormalized metric which has been introduced

in (3.6). In addition, we need r free fermionic ghost systems with fields pa(z) and θa(z) of

spins h = 1 and h = 0, respectively. They possess the usual operator products

pa(z) θb(w) =
δb
a

z − w
. (3.20)
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Fermionic fields are assumed to have trivial operator product expansions with the bosonic

generators. By construction, the currents Ki
B and the fields pa, θb generate the chiral

symmetry of the field theory whose action is

S0[gB , p, θ] = SWZNW
ren [gB ] + Sfree[θ, θ̄, p, p̄]. (3.21)

Our full WZNW theory may be considered as a deformation of this theory, once we take

into account the interaction term between bosons and fermions, see eq. (3.9). The further

development of this approach and its consequences will be the subject of section 5.

But returning first to the decoupled action (3.21), it is easy to see that it defines a

conformal field theory with energy momentum tensor

T =
1

2

[
Ki

B Ωij Kj
B + tr(ΩRi)κij ∂Kj

B

]
− pa∂θa. (3.22)

Note the existence of the dilaton contributions, i.e. terms linear in derivatives of the cur-

rents. In addition to the conformal symmetries, the action (3.21) is also invariant under

a ĝ ⊕ ĝ current superalgebra. The corresponding holomorphic currents are defined by the

relations (normal ordering is implied)

Ki(z) = Ki
B(z) + pa (Ri)ab θb(z)

Sa
1 (z) = ∂θa(z) + (Ri)ab κij θbKj

B(z) − 1

2
(Ri)ac κij (Rj)bd pbθ

cθd(z)

S2a(z) = −pa(z).

(3.23)

It is a straightforward exercise, even though slightly cumbersome and lengthy, to check that

this set of generators reproduces the operator product expansions (3.10), (3.11) and (3.12).

The only input we need is the Jacobi identity (2.5). The same identity shows that the

quantity in (3.23) which is used to contract pbθ
cθd is in fact antisymmetric in the lower

two indices. Obviously, a similar set of currents may be obtained for the antiholomorphic

sector. Given the representation (3.23) for the current superalgebra one may also check

the equivalence of the expressions (3.14) and (3.22) for the energy momentum tensors.

Algebraically, the calculation rests on the Jacobi identity (2.5) as well as on the equations

(Ω−1)ij κij (Rl)ab = (Ri)ac (Ω−1)cb = (Ω−1)ac (Ri)cb. (3.24)

The latter arise as invariance constraints for the metric 〈·, ·〉full-ren as defined in eq. (3.13).

The current superalgebra defined in (3.23) has a natural action on the vertex operators

of the conformal field theory defined by the decoupled Lagrangian S0. Once we include

the interaction term, the theory becomes equivalent to the full WZNW model. Hence, we

must be able to map the vertex operators of the decoupled theory to the vertex operators

of the WZNW theory. The precise relation turns out to be rather involved. Therefore, we

postpone a more detailed exposition of this relation to section 5. Instead, we will continue

with a semi-classical analysis of the space of vertex operators. This procedure allows us

to clearly exhibit the subtleties of the full quantum field theory in a simple and geometric

setup.
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4. Semi-classical analysis

The WZNW model we introduced in the last section admits a semi-classical limit when the

invariant metric defined in (2.3) is scaled to infinity. This corresponds to choosing the levels

of the underlying bosonic WZNW model large. In this weak curvature regime we expect

the conformal dimensions of all primary fields to tend to zero and the higher modes to

decouple. We will start with a discussion of the global symmetry of the WZNW model and

how it is realized in terms of differential operators on the space of quantum mechanical wave

functions. Then we discuss the Laplacian, i.e. the wave operator, on G and determine its

(generalized) eigenfunctions and eigenvalues which approximate the vertex operators and

their conformal dimensions in the full conformal field theory. It is shown that the spectrum

contains non-chiral indecomposable modules on which the Laplacian is not diagonalizable.

4.1 Symmetry

One of the inherent properties of supergroup manifolds G is that they admit two actions

of G on itself. These so-called left and right regular actions are defined by the maps

Lh : g 7→ hg and Rh : g 7→ gh−1. (4.1)

Since the definition of the WZNW Lagrangian (3.2) only involves the invariant metric, both

actions are automatically symmetries of our model. In fact, in the present situation they are

even promoted to current superalgebra symmetries as we have already seen in the previous

section. In this section we will just discuss the point-particle limit (or minisuperspace

approximation) where only the zero-modes are taken into account and every dependence

on the world-sheet coordinates is ignored. This corresponds to quantum mechanics on the

supergroup [58]. Our aim is to find all the eigenfunctions of the Laplace (or wave) operator.

Given the symmetry above we know that the state space of the physical system may

be decomposed into representations of g⊕ g. The corresponding symmetry can be realized

in terms of differential operators acting on the wave functions which are elements of some

algebra of functions F(G) on the supergroup.14 These functions will naturally depend

on a bosonic group element gB and on the fermionic coordinates θa and θ̄a. By using a

Taylor expansion with respect to the fermionic variables the basis elements of F(G) may be

represented as a complex valued function depending solely on gB multiplied by a product

of Grassmann variables.

The left and right regular action of the supergroup on itself, as given in (4.1), then

induces the action

(hL × hR) · f : g 7→ f(h−1
L ghR) (4.2)

14The naive definition of the algebra of function as elements of the Grassmann algebra in the fermions

θa and θ̄a with square integrable coefficient functions on GB leads to inconsistencies. A more detailed

discussion of these subtle points and the explicit introduction of the correct algebra of function shall be

postponed until section 4.3.
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on arbitrary elements f ∈ F(G). This in turn translates into the following differential

operators,

Ki = Ki
B − (Ri)ab θb ∂a S2a = −∂a

Sa
1 = Ra

b(gB) ∂̄b + (Ri)ab θb κij Kj
B − 1

2
(Ri)ac κij (Rj)bd θcθd∂b,

(4.3)

for the infinitesimal left regular action. In addition to the various structure constants of

the Lie superalgebra, these expressions contain derivatives ∂a = ∂/∂θa and ∂̄a = ∂/∂θ̄a

with respect to the Grassman variables θa and θ̄a. We have also introduced the differential

operators Ki
B which implement the regular action of the bosonic subgroup GB . They

involve derivatives with respect to bosonic coordinates only, but the precise form depends

on the particular choice of coordinates on GB . Similar expressions can be found for the

infinitesimal generators of the right action,

K̄i = K̄i
B + θ̄a (Ri)ab ∂̄b S̄a

1 = ∂̄a

S̄2a = −Rb
a(gB) ∂b − θ̄b (Ri)ba κij K̄j

B − 1

2
(Ri)ca κij (Rj)db θ̄cθ̄d∂̄

b.
(4.4)

One can check explicitly that these two sets of differential operators form two

(anti)commuting copies of the Lie superalgebra g. Again, these calculations rely heav-

ily on the Jacobi identity (2.5).

The expressions for the differential operators exhibit some peculiar properties that we

would like to expand on. Note that, apart from purely bosonic pieces, the generators (4.3)

of the left regular action would only involve the Grassmann coordinates θa and the cor-

responding derivatives — but no bared fermions — if it were not for the very first term

in the definition of Sa
1 . Indeed, this term does contain derivatives with respect to the

fermionic coordinates θ̄a. Obviously, the situation is reversed for the right regular action.

It is also worth stressing that the coefficients in the first terms of both Sa
1 and S̄2a are

non-trivial functions on the bosonic group. Again this is in sharp contrast to all the other

terms whose coefficients are independent of the bosonic coordinates (though functions of

the Grassmann variables, of course). It has been emphasized in [24] that the occurrence of

the matrix R(gB) can spoil the normalizability properties of the functions the symmetry

transformations are acting on. This always happens if the target space is non-compact

since R is a finite dimensional representation and hence non-unitary in that case. Conse-

quently, the product of an L2-function from F(GB) with R(gB) will not be an L2-function

anymore.

In view of these issues with Sa
1 and S̄2a it is tempting to simply drop the troublesome

terms. Even though that might seem a rather arbitrary modification at first, it turns out

that the corresponding truncated differential operators K
i = Ki, S2a = S2a,

S
a
1 = (Ri)ab θb κij Kj

B − 1

2
(Ri)ac κij (Rj)bd θcθd∂b (4.5)

and their bared analogues also satisfy the commutation relations of g ⊕ g! For the special

case of PSU(1, 1|2), it was explained in [24] that this is much more than a mere curiosity.
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Indeed, we conclude that the truncated operators K
i, S

a
1 and S2a model the action of

zero-modes of our currents (3.23) on ground states in the decoupled free fermion theory,

i.e. before the coupling of bosonic and fermionic fields is taken into account. Note that

the zero-mode of p(z) is a field theoretic incarnation of the derivative ∂ since p(z) is the

canonically conjugate momentum belonging to θ(z). We shall now proceed to argue that

the original differential operators (4.3) and (4.4) encode a much more intricate structure,

namely the action of the zero-modes on primaries in the full interacting WZNW model.

4.2 Harmonic analysis

The algebra of functions F(G) furnishes a representation of g⊕ g via the differential oper-

ators (4.3) and (4.4). Our aim is to write F(G) as a direct sum of indecomposable building

blocks of the type discussed in section 2.2. The final result can be found in eq. (4.7) below.

But since the outcome is rather complicated and somewhat hard to digest we would like

to start the harmonic analysis by discussing the left and the right action of g separately.

We claim that the space of functions decomposes under these actions according to15

F(G)
∣∣
g(left)

= F(G)
∣∣
g(right)

=
⊕

µ∈Typ(G)

dim(Kµ) Kµ ⊕
⊕

µ∈Atyp(G)

dim(Lµ) Pµ. (4.6)

The symbols Typ(G) and Atyp(G) denote the sets of typical and atypical irreducible rep-

resentations of the supergroup. The distinction between modules of G and modules of g

is necessary since there might exist representations of the Lie superalgebra which cannot

be lifted to G. Under rather general conditions (to be recalled below eq. (4.13)) the set

Rep(G) of supergroup representations coincides with Rep(GB) ⊂ Rep(g0), the set of all

unitary irreducible representations of the bosonic subgroup GB .

As we see, the decomposition (4.6) clearly distinguishes between the typical and the

atypical sector of our space. In the typical sector we sum over irreducible Kac modules

Kµ = Lµ with a multiplicity space M(Kµ) of dimension dimKµ, a prescription which is

familiar from the Peter-Weyl theory for bosonic groups. In contrast, the atypical sector

consists of a sum over all the projective covers Pµ belonging to atypical irreducibles Lµ

and coming with a multiplicity space M(Pµ) of the smaller dimension dimLµ < dimKµ.

Note that the algebra of functions forms a projective module and hence possesses a Kac

composition series, i.e. a filtration in terms of Kac modules. This immediately permits us

to spell out the character of the g⊕ g-module F(G) and it will lead to a concrete proposal

for the modular invariant partition function of the WZNW model in section 5.

Naturally, our formula (4.6) is the same for the left and the right action. This sym-

metry between left and right regular transformations must certainly be maintained when

we extend our analysis to the combined left and right action of g ⊕ g on F(G). In the

typical sector the multiplicity spaces of the Kac modules have precisely the dimension that

is needed to promote them to Kac modules themselves, a prescription that is perfectly

consistent with the symmetry between left and right action. On the other hand, the same

symmetry requirement excludes that the individual multiplicity spaces in the atypical sec-

tor are simply promoted to irreducible representations of g. Consequently, the left action

15A similar expression already appeared in [59] in a more general context.
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must induce maps between various multiplicity spaces for the right action and vice versa.

In this way, the atypical sector then consists of non-chiral indecomposables I[σ] which en-

tangle a (possibly infinite) number of left and right projective covers whose labels belong

to the same block [σ]. The final expression for the representation content of the algebra of

functions on G is thus of the form

F(G)
∣∣
g⊕g

=
⊕

µ∈Typ(G)

Lµ ⊗ L∗
µ ⊕

⊕

[σ]∈Γatyp(G)

I[σ]. (4.7)

The systematic study of the non-chiral representations I[σ] will be left for future work. Note

that similar and, in the specific cases of GL(1|1) and SU(2|1), more explicit expressions

have been obtained in [36, 24, 37]. We also wish to emphasize that the socle of (4.7), i.e.

its maximal semisimple subspace, corresponds to a direct sum over all pairs of irreducible

representations and their duals. It would be interesting to compare our findings with the

more abstract results in [60] where the space of functions on G = GL(m|n) is treated in

the framework of Hopf superalgebras.

Having stated the main results of this subsection we would like to sketch their deriva-

tion. For the proof of eq. (4.6), it is advantageous to enlarge the symmetry from g to an

action g ⊕ g0, i.e. to retain the bosonic generators of the right regular transformations if

we analyze the left action. With respect to the combined action one finds

F(G)
∣∣
g⊕g0

=
⊕

µ∈Rep(GB)

Bµ ⊗ V ∗
µ F(G)

∣∣
g0⊕g

=
⊕

µ∈Rep(GB)

Vµ ⊗ B∗
µ. (4.8)

In fact, from the Peter-Weyl theorem for compact semisimple Lie groups (or suitable gen-

eralizations thereof) we deduce that the functions

det R(g−1
B )

[
D(µ)(gB)

]α

β
θ1 · · · θr θ̄1 · · · θ̄r (4.9)

involving matrix elements of the representation D(µ) are part of the spectrum for all uni-

tary irreducible representations µ of GB . The matrix elements of D(µ) transform in the

representation Vµ ⊗ V ∗
µ with respect to g0 ⊕ g0. Since the product of the remaining factors

multiplying D(µ) is invariant under purely bosonic transformations, we conclude that the

set of functions (4.9) transforms in Vµ ⊗ V ∗
µ as well.

All that remains to be done is to augment the action on the left from the bosonic

subalgebra g0 to the entire Lie superalgebra g. The supersymmetric multiplets we generate

from the functions (4.9) by repeated action with all the fermionic generators Sa
1 and S2a are

isomorphic to the representation Bµ of g. Similar remarks apply if we consider the action

of g0 ⊕ g. Thereby we have established the decompositions (4.8). In order to proceed from

eqs. (4.8) to the decomposition formulas (4.6) the representations Bµ must be decomposed

into their indecomposable building blocks. This is achieved with the help of eq. (2.15)

and results in eq. (4.6) after a simple re-summation. Our derivation has actually furnished

a slightly stronger result since it determines how the multiplicity spaces decompose with

respect to the action of the bosonic subalgebra g0.
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4.3 Spectrum and generalized eigenfunctions

Given the decomposition of the algebra of functions into representations of g⊕g we can now

address our original problem of finding the semi-classical expressions of both the conformal

dimensions and the primary fields. In the semi-classical limit, conformal dimensions are

given by (half) the eigenvalues of the Casimir operator acting on F(G). Since we are dealing

with a space of functions we will refer to the latter as “Laplacian” on the supergroup. The

eigenvalues can be read off directly from the decomposition (4.7). In the typical sector

the Laplacian is diagonalizable and leads to the eigenvalues C(Kµ). On the other hand,

the Laplacian ceases to be diagonalizable on the non-chiral representations I[σ]. Here, the

Casimir may just be brought into Jordan normal form.

The previous paragraph provides a complete solution of the eigenvalue problem but it

does not yield explicit formulas for the (generalized) eigenfunctions. Since the latter are

semi-classical versions of the primary fields in the full CFT (see section 5 below), it seems

worthwhile recalling the elegant construction of eigenfunctions that was presented recently

in [24]. The Laplace operator on our supergroup G is given by

∆ =
1

2
C = ∆B − 1

2
tr(Ri)κij Kj

B − ∂a Ra
b(gB) ∂̄b. (4.10)

Observe that only the last term contains fermionic derivatives, with coefficents which de-

pend on bosonic coordinates. Let us also emphasize that the purely bosonic piece of ∆

differs from the Laplacian on the bosonic subgroup by the second term. This deviation

is related to the presence of the non-trivial dilaton contribution (3.7). Since the complete

Laplacian is non-diagonalizable it was proposed in [24] to perform the harmonic analysis

in two steps. First an auxiliary problem is solved which is based on the purely bosonic

Laplacian

∆0 = ∆B − 1

2
tr(Ri)κij Kj

B . (4.11)

This auxiliary Laplacian agrees with the Casimir operator obtained from the reduced dif-

ferential operators K and S and, as we shall see, it is completely diagonalizable on the

following auxiliary space16

F(G) = F(GB) ⊗
∧

(θa, θ̄b). (4.12)

Here, the factor F(GB) denotes the algebra of square (or δ-function) normalizable functions

on the bosonic subgroup and
∧

(θa, θ̄b) is the Grassmann (or exterior) algebra generated

by the fermionic coordinates. In the second step, the eigenfunctions of ∆0 are mapped to

generalized eigenfunctions of ∆ using a linear map Ξ : F(G) → F(G). The latter adds

“subleading” fermionic contributions in a formal but well-defined way and thereby turns

an eigenfunction of ∆0 into a generalized eigenfunction of ∆. Our prescription involves

explicit multiplications with the matrix elements of R(gB) which, e.g. for non-compact

groups GB , are not necessarily part of the unitary spectrum. Hence, the eigenfunctions of

16The auxiliary space F(G) should be thought of as the semi-classical truncation of the state space for the

decoupled theory S0, see eq. (3.21). On the other hand F(G) corresponds to the semi-classical truncation

of the full state space of the WZNW model.
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∆ need not be normalizable in the original sense, i.e. when regarded as Grassmann valued

functions on the bosonic subgroup. This is the main reason why we need to distinguish

between the spaces F(G) and F(G) = Im(Ξ). Ultimately, the problem may be traced back

to the presence of the terms involving R(gB) in Sa
1 and S̄2a. In fact, as we pointed out

before, because of those terms the unreduced differential operators may cease to act within

F(G).

In order to gain some intuition into the structure of the function space (4.12) as a

representation of the symmetry algebra g ⊕ g, it is helpful to restrict the action to the

bosonic subalgebra g0 ⊕ g0 first. Since the differential operators K
i and K̄

i factorize in an

action on the function algebra F(GB) and on the Grassmann algebra
∧

(θa, θ̄b), we can

decompose both factors separately. If the bosonic subgroup is compact, semisimple and

simply-connected we may employ the Peter-Weyl theorem in order to obtain

F(GB)
∣∣
g0⊕g0

=
⊕

µ∈Rep(GB)

Vµ ⊗ V ∗
µ , (4.13)

where Rep(GB) ⊂ Rep(g0) is the set of all unitary irreducible representations of GB . In

more general situations this formula will need a slight refinement concerning the content

of Rep(GB), although the structure will still be very similar. With regard to the fermions,

the left action just affects the set θa, while the right action operates on the set θ̄a. Given

the known transformation behavior of a single fermion we thus find

∧
(θa, θ̄b)

∣∣
g0⊕g0

= F ⊗ F∗. (4.14)

Combining these simple facts and defining Rep(G) = Rep(GB) we conclude

F(G)
∣∣
g0⊕g0

=
⊕

µ∈Rep(G)

[
Vµ ⊗F

]
⊗

[
Vµ ⊗F

]∗
. (4.15)

Before we proceed to the supersymmetric extension, we would like to discuss the general

form of elements in the individual subspaces of (4.15). The space of functions is spanned

by

f
(µ)a1···as,α
b1···bt,β

(g) =
[
D(µ)(gB)

]α

β
θa1 · · · θas θ̄b1 · · · θ̄bt

, (4.16)

where D(µ) denotes the representation of the bosonic subgroup GB on the module Vµ .

Our most important task is to determine how the bosonic representations that occur

in the decomposition (4.15) combine into multiplets of the full symmetry g ⊕ g. As a first

hint on what the answer will be, we observe that the representation content in eq. (4.15)

agrees with the bosonic content of Kac modules. And indeed, under the action of fermionic

generators, the various bosonic modules are easily seen to combine into our modules Kµ.

To see this we note that the purely bosonic functions
[
D(µ)(gB)

]α

β
are annihilated by S2a

and S̄
a
1 simultaneously and therefore they span the subspace Vµ⊗V ∗

µ from which we induce

the Kac module Kµ ⊗K∗
µ. Consequently, we obtain the decomposition

F(G)
∣∣
g⊕g

=
⊕

µ∈Rep(G)

Kµ ⊗K∗
µ. (4.17)
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Note that the sum runs over both typical and atypical representations, i.e. the space of

functions is not fully reducible. The Laplacian ∆0 is completely diagonalizable on this

space and its eigenvalues are given by eq. (2.19).

Let us now return to the analysis of the space F(G). We recall that a function Φλ ∈
F(G) is a generalized eigenfunction to the eigenvalue λ if there exists a number n ∈ N such

that

(∆ − λ)nΦλ = 0. (4.18)

Following [24], let us introduce operators A
(n)
λ which are defined through the relation

A
(n)
λ = (∆ − λ)n − (∆0 − λ)n. (4.19)

In the sequel it will become crucial that each single term of A
(n)
λ contains at least one

fermionic derivative. After these preparations we consider a function fλ ∈ F(G) which is

an eigenfunction of ∆0, i.e. which satisfies ∆0fλ = λfλ. We then associate a family of new

functions Ξ
(n)
λ fλ to fλ through

Ξ
(n)
λ fλ =

∞∑

s=0

[
−(∆0 − λ)−nA

(n)
λ

]s
fλ ≡

r∑

s=0

(
Q

(n)
λ

)s
fλ. (4.20)

Obviously, the sum truncates after a finite number of terms due to the fermionic derivatives

which occur in all the operators A
(n)
λ . A formal calculation shows furthermore that the

function Ξ
(n)
λ fλ is a solution of eq. (4.18). Using the definition (4.20) on each of the

eigenspaces Ker(∆0 − λ) we obtain a family of maps Ξ(n) which formally exist on the

complete function space F(G).

The only problem with the maps Ξ(n) is that they might be singular on a certain

subspace of F(G). In fact, a close inspection of our expression (4.20) shows that it requires

to invert (∆0 − λ) which may not be possible. If this happens, it signals the existence of

functions in F(G) which are not annihilated by (∆ − λ)n for any λ, and therefore implies

that some Jordan blocks of the Laplacian must have a rank higher than n. It may be

shown by explicit calculation that the family of maps Ξ(n) stabilizes for n > r and that the

resulting limit map Ξ is well-defined on the complete space F(G) [24]. We then define the

space F(G) = Im(Ξ) as the image of the auxiliary space F(G) under Ξ. This procedure

provides an explicit construction of the eigenspaces and Jordan blocks appearing in the

decomposition (4.7). It should also be recalled that the map Ξ acts as an intertwiner

between the typical subspace of F(G) with the reduced action of g ⊕ g and the typical

subspace of F(G) with the full action of g⊕ g [24]. As before, reduced and full action refer

to the use of the differential operators (Ki, Sa
1, S2a, K̄

i, S̄a
1, S̄2a) and (Ki, Sa

1 , S2a, K̄
i, S̄a

1 , S̄2a),

respectively.

Within the present context we can actually convince ourselves that the quadratic

Casimir is not diagonalizable on any of the projective covers Pµ. From the above it is clear

that every projective cover appears in the decomposition of the right regular action on the

function space F(G) and that the corresponding subspace M(Pµ)⊗Pµ contains functions

of the form (4.9). We claim that some of the latter must necessarily be proper generalized

– 24 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
5

eigenfunctions. In fact, all of them are eigenfunctions of ∆0 with eigenvalue λ = Cµ/2.

But in order for them to be eigenfunctions of ∆, the action of Ξ(1) must be well defined.

This would require in particular that we can invert ∆0 − λ on

∂a Ra
b(gB) ∂̄b det R(g−1

B )
[
D(µ)(gB)

]α

β
θ1 · · · θr θ̄1 · · · θ̄r. (4.21)

But this is clearly not the case if the Kac module Kµ contains singular vectors that are

reached from the ground states through application of a single fermionic generator. Hence,

we have established our claim for all such labels µ. In case the singular vectors of Kµ

appear only at higher levels, one has to refine the analysis and consider also higher order

(in the summation index s) terms in the definition of Ξ(1).

4.4 Correlation functions

By now we have complete control over representation content and eigenfunctions of the

Laplacian in the weak curvature limit of the WZNW model. In addition, we can also

compute correlation functions in this limit. They are given as integrals over a product

of functions on the supergroup. Integration is performed with an appropriate invariant

measure, namely the so-called Haar measure dµ(g) of the supergroup. The easiest way to

obtain dµ is to extract it from the invariant metric,

ds2 = ds2
B − 2 dθ̄a Ra

b(g
−1
B ) dθb. (4.22)

Here, ds2
B denotes the standard invariant metric on the bosonic subgroup. The total metric

has a “warped” form since the fermionic bit has an explicit functional dependence on the

bosonic coordinates gB . We can now obtain the desired measure as the superdeterminant

of the metric,

dµ(g) = dµB(gB) det
(
R(gB)

)
dθ1 · · · dθr dθ̄1 · · · dθ̄r (4.23)

where dµB denotes an invariant measure on the bosonic subgroup. Once this expression

has been written down, we can forget our heuristic derivation and check the invariance

explicitly. Note that the existence of the dilaton (3.7) in the WZNW Lagrangian (3.5) is

directly related to the presence of the factor det
(
R(gB)

)
in the measure.

Suppose now we are given N generalized eigenfunctions of the Laplacian ∆ on the

supergroup. According to the previous discussion, the space of eigenfunctions possesses a

basis of the form

φa

µ;b = Ξ fa

µ;b =

r∑

s=0

Qs
λfa

µ;b

where fa

µ;b = fa1,...,as

µ;b1,...,bt
= fµ(gB) θa1 · · · θas θ̄b1 · · · θbt

.

(4.24)

Here, fµ(gB) are eigenfunctions of the bosonic Laplacian ∆0 with eigenvalue λ and Ξ =

Ξ(r), Qλ = Q
(r)
λ have been defined in eq. (4.20). The N -point functions of such semi-classical

vertex operators are given by the integrals

〈
φa1

µ1;b1
· · ·φaN

µN ;bN

〉
=

∫
dµ(g)φa1

µ1;b1
· · ·φaN

µN ;bN

=
r∑

s1=0

· · ·
r∑

sN=0

∫
dµ(g)Qs1

λ1
fa1

µ1;b1
· · · QsN

λN
faN

µN ;bN
.

(4.25)
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Most of the (r + 1)N terms in this expression vanish due to the properties of Grassmann

variables and their integration. In fact the largest number of non-zero terms that can

possibly appear is N · r + 1. This is realized if all eigenfunctions contain terms with

the maximal number of fermionic coordinates (along with the lower order terms that are

determined by the action of Qs
λ). A particularly simple case appears when e.g. the first

eigenfunction φ1 = φ1,2,...,r
µ1;1,2,...,r contains leading terms with r fermions θ and θ̄ while all

others are purely bosonic. In that case, the correlator is simply given by

〈
φ1,2,...,r

µ1;1,2,...,r φµ2 · · ·φµN

〉
=

∫
dµB(gB) det

(
R(gB)

)
fµ1(gB)fµ2(gB) · · · fµN

(gB). (4.26)

We shall see that very similar results can be established for correlators in the full WZNW

on type I supergroups. This is one of the subjects we shall address in the next section.

5. The quantum WZNW model

After the thorough discussion of its symmetries and its semi-classical limit it is now only a

small step to come up with a complete solution of the full quantum WZNW model. We first

show that the free fermion resolution gives rise to a natural class of chiral representations.

Subsequently, we comment on the representation content of the full non-chiral theory,

sketch the calculation of correlation functions and argue that the natural modular invariant

partition function can be expressed as a diagonal sum over characters of Kac modules. We

conclude with some speculations about non-trivial modular invariants.

5.1 Chiral representations of the current superalgebra

In section 3.2 and 3.3 we decribed in some detail the chiral symmetry of WZNW models

on supergroups along with their construction in terms of free fermions. Our next aim is to

introduce representations Hµ of ĝ. It is clear that free fermion resolutions provide a natural

construction for representations of current superalgebras. What is remarkable, however, is

that these representations turn out to be irreducible for generic (typical) choices of µ.

According to the results of section 3.3 every representation of the decoupled system

of the bosonic currents Ki
B and the fermions pθ defines a module of the current superal-

gebra via eqs. (3.23). In the bosonic part we shall work with irreducible representations

Vµ of ĝren
0 . If the group GB is compact there will be a finite number of physical repre-

sentations (the “integrable” ones), otherwise one may encounter infinitely many of them,

including continuous series. We identify the physically relevant representations with a sub-

set Rep(ĝren
0 ) ⊂ Rep(g0) within the representation labels for the horizontal subalgebra g0.

This is possible since the ground states of Vµ form the g0-module Vµ upon restriction of

the ĝren
0 -action to its horizontal subalgebra g0. Note that the curvature of the background

geometry leads to truncations which imply that Rep(ĝren
0 ) is generally a true subset of

Rep(g0).
17 The fermions, on the other hand, admit a unique irreducible representation VF .

The latter is generated from the SL(2, C)-invariant vacuum |0〉 by imposing the highest

17For csu(2)k, for instance, the integrable representations are λ = 0, 1, . . . , k while there is no upper bound

for unitary su(2)-modules.
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weight conditions (pa)n|0〉 = 0 for n ≥ 0 and θa
n|0〉 = 0 for n > 0.18 The irreducible

representations of the product theory therefore take the form

Hµ = Vµ ⊗ VF . (5.1)

Given the free fermion realization (3.23), these spaces admit an action of the infinite di-

mensional current superalgebra ĝ as defined in (3.10)-(3.12).

The generalized Fock modules Hµ provide the proper realization of chiral vertex op-

erators as defined around eq. (3.15). It is indeed evident from our construction that the

ground states of Hµ transform in the g-module Kµ (recall that the ground states of Vµ form

the g0-module Vµ) and that they are annihilated by all positive modes of the currents and

by the zero modes of S2a(z). But there is another and much deeper reason for the relevance

of the modules Hµ. Observe that the current superalgebra ĝ is a true subalgebra of the

algebra that is generated from ĝren
0 and the fermions. Therefore, one might suspect that the

spaces Hµ are no longer irreducible with respect to the action of ĝ. But for generic choices

of µ this is not the case: The action of ĝ on Hµ is typically irreducible! This property

is in sharp contrast to what happens for standard free field constructions [38 – 43] and it

characterizes the modules Hµ as the natural infinite dimensional lift of Kac modules for the

finite dimensional Lie superalgebra g. We take this observation as a motivation to refer to

the generalized Fock modules Hµ as Kac modules from now on. Let us emphasize, however,

that they are constructed in a different manner than those of the finite dimensional Lie

superalgebra g in section 2.2.1.

Since it is a rather crucial issue for the following, we would like to spend some time to

establish irreducibility of the representations Hµ for generic labels µ. We shall assume for

simplicity that the underlying bosonic representation Vµ is a highest weight module. The

highest weight µ determines two seemingly different (but in fact equivalent) Verma-like

modules of ĝ. The first of them will be denoted by Y ′
µ. It is obtained as a product

Y ′
µ = Y(0,ren)

µ ⊗ VF

of the Verma module Y(0,ren)
µ of ĝren

0 with the free fermion state space VF . We shall consider

Y ′
µ as a ĝ-module. The ĝ-module Hµ may be recovered from Y ′

µ by dividing out all the

bosonic singular vectors from the ĝren
0 -module Y(0,ren)

µ . But there is a second natural Verma-

like module Yµ for ĝ which is constructed directly by requiring that all the positive modes

as well as the zero-modes (S2a)0 annihilate the highest weight, i.e. Yµ is defined without

any reference to the free fermion construction of ĝ. Since the generators Ki
n, Sa

1,n, S2b,n and

Ki
B,n, θa

n, pa,n are in one-to-one correspondence with each other, the Verma modules Yµ

and Y ′
µ are naturally isomorphic as vector spaces. The natural isomorphism preserves the

grading by conformal dimensions. Hence, the characters of Yµ and Y ′
µ agree. It is tempting

to conjecture that Yµ and Y ′
µ are in fact equivalent as ĝ-modules.

In order to understand the equality of conformal dimensions we could simply refer to

the equivalence of energy momentum tensors which has been proven in section 3.3. But

18One could include twisted sectors where the moding of the fermions is not integer. But then the global

supersymmetry would not be realized in the WZNW model since there were no zero-modes.
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there is also a more pedestrian way of seeing it. In the case of ĝren
0 , the current algebra

involves the renormalized metric κ − γ while the bosonic subalgebra ĝ0 of ĝ is defined in

terms of the metric κ. But according to the Sugawara constructions for ĝren
0 and ĝ, the

respective energy momentum tensor requires an additional quantum renormalization of the

metric in both cases. This extra renormalization is different as well and the final result

(the “fully renormalized metric”) coincides again. The previous statement corresponds to

the two different ways of introducing brackets in the following equation,

(
κij − γij

)
− 1

2
f im

n f jn
m = κij −

(
γij +

1

2
f im

n f jn
m

)
. (5.2)

The first term on both sides refers to the “classical” metric and the second term describes

the quantum renormalization. In addition, the effect of the fermions in ĝ has to be traded

for the presence of the dilaton in the ĝren
0 description.

Let us now focus on the Verma-like modules Yµ. In general, these modules contain

singular vectors, certainly of bosonic type but possibly also fermionic ones. Our goal here

is two-fold: First, we would like to argue for a one-to-one correspondence of the bosonic

singular vectors with those in Y(0,ren)
µ . Moreover, we would like to show that the existence

of fermionic singular vectors is an atypical event, occurring only for a small subset of

weights µ.

In principle, the structure of singular vectors in the module Yµ can be discussed using a

suitable variant of the Kac-Kazhdan determinant [51]. For simplicity we shall follow a more

down-to-earth approach here. The existence of a proper submodule Yν in the representation

Yµ requires that the weight ν can be reached from µ by (multiple) application of the root

generators of ĝ. We may qualify this further with the help of two gradings, one with respect

to the generator L0
19 and the other coming from the Cartan subalgebra of g (which is

identical to that of g0). The latter implies that the weights µ and ν have to be related

by ν = µ − mα where α is a positive root of g and m ∈ Z≥0. If the energy direction is

considered separately, one obtains a necessary condition of the form

hµ−mα = hµ + nm, (5.3)

where h denotes the conformal dimension and the root generator belonging to α is assumed

to increase the energy by n units.

We will investigate condition (5.3) for bosonic root generators of ĝ first. The latter are

in one-to-one correspondence with those of ĝren
0 . Since, in addition, the conformal dimen-

sions of highest weight modules Yµ and Y(0,ren)
µ coincide, we conclude that the associated

decoupling equations (5.3) possess the same set of bosonic solutions. We consider this a

strong hint that singular vectors in the ĝ0-modules Y(0,ren)
µ ⊗VF agree with those singular

vectors of the ĝ-modules Yµ which can be reached by application of bosonic root generators.

If we assume this to be true, all bosonic singular vectors are removed when be pass from

Yµ to Hµ. Therefore, the singular vectors that remain in Hµ are necessarily fermionic.

Let us now look for the existence of potential fermionic singular vectors. We do not

intend to formulate any precise rules for when they appear, but would like to argue that

19The metric or the level(s), respectively, are assumed to be fixed once and for all.
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they must be rare compared to their bosonic counterparts. To this end, we recall that the

conformal dimension h is a quadratic expression of the form hµ = 〈µ, µ + 2ρ〉 (the bracket

denoting the non-degenerate scalar product that comes with the metric (3.13)). Hence, we

can always solve eq. (5.3) for m, no matter which bosonic root vector α we insert. This

ceases to be true for fermionic root generators. Since they are nilpotent, eq. (5.3) needs

to be solved with m = 0, 1, something that rarely ever works out. Therefore, modules

with fermionic singular vectors are called atypical. A more systematic study of atypical

representations is beyond the scope of this article. But the experience with several examples

suggests that the composition series of the representations Hµ is finite and that they possess

the same structure as the modules of the horizontal subsuperalgebra. In fact, we believe

that the only possible fermionic singular vectors are those that appear on the level of

ground states and images thereof under the action of certain spectral flow automorphisms

(see section 5.2).

Given the structure of the Kac modules (5.1) it is straightforward to derive character

formulas and their modular properties. Indeed, the characters simply factorize into

χHµ(q) = χVµ(q)χVF
(q). (5.4)

The supercharacter of Hµ has the same product form but with the fermionic factor χVF

being replaced by its corresponding supercharacter. Relation (5.4) may also be extended

to a statement about non-specialized characters since the fermions pa and θa are charged

under the bosonic generators Ki. If g0 is a simple Lie algebra the characters of the unitary

ĝren
0 -modules Vµ can be looked up in [61, 62]. They form a finite dimensional unitary

representation of the modular group. The character of the fermionic representation VF , on

the other hand, is given by

χVF
(q) =

[
2q

1
12

∞∏

n=1

(1 + qn)2

]r

=

[
ϑ2(q)

η(q)

]r

. (5.5)

Under the modular transformation τ 7→ −1/τ the quotient ϑ2/η is simply replaced by

ϑ4/η. Hence, all the non-trivial information about modular transformations resides in

the behaviour of the characters for the bosonic algebra ĝren
0 . Consequently, the modular

properties of Kac modules Hµ are under complete control. Even though Kac modules do

not suffice to build the state space of WZNW models on supergroups, the bulk partition

function for type I supergroups may be expressed in terms of characters of Kac modules

(see below). Therefore, modular invariance of the bulk partition function is guaranteed as

long as it involves a summation over the same set of labels as in the corresponding bosonic

model. The precise construction will be explained in more detail in section 5.3.

It remains to work out the characters of atypical irreducible representations. The latter

are quotients of reducible Kac modules. According to our experience with concrete models,

the composition series of the infinite dimensional Kac modules Hµ of ĝ is very closely re-

lated to that of Kac modules for the horizontal subsuperalgebra g. In specific examples it is

usually straightforward to invert the linear relations between characters resulting from such

a composition series, i.e. to express the characters of atypical irreducible representations
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through those of Kac modules. A more general approach to this problem using Kazhdan-

Lusztig polynomials has been presented in [49, Proposition 5.4] (see also [52, 63]). Recently

it has been shown that the solution for the inversion problem could be used to (re)derive

the characters of irreducible representations for the affine Lie superalgebras ŝl(2|1) and

p̂sl(2|2) [24, 37]. We expect that this observation extends to more general current superal-

gebras and that it will be helpful in the study of modular transformations. Representations

of affine Lie superalgebras and their behaviour under modular transformations have also

been studied in [64, 65, 13].

5.2 Spectral flow automorphisms

In the previous subsection we have skipped over one rather important element in the

representation theory of current (super)algebras: The spectral flow automorphisms. As we

shall recall momentarily, spectral flow automorphisms describe symmetry transformations

in the representation theory of current algebras. Furthermore, they seem to be realized

as exact symmetries of the WZNW models on supergroups, a property that makes them

highly relevant for our discussion of partition functions below.

Throughout the following discussion, we shall denote (spectral flow) automorphisms of

the current superalgebra ĝ by ω. We shall mostly assume that the action of ω is consistent

with the boundary conditions for currents, i.e. that it preserves the integer moding of the

currents. In the context of representation theory, any such spectral flow automorphism ω

defines a map on the set of (isomorphism classes of) representations ρ : ĝ → End(V ) via

concatenation, ω(ρ) = ρ ◦ ω : ĝ → End(V ).

In line with our general strategy, we would like to establish that spectral flow auto-

morphisms ω of the current superalgebra are uniquely determined by their action on the

bosonic generators. A spectral flow automorphism ω : ĝ0 → ĝ0 of the bosonic subalgebra

ĝ0 is, by definition, a linear map20

ω
(
Ki(z)

)
= (W0)

i
j(z)Kj(z) + wi

0 z−1 (5.6)

satisfying certain consistency conditions to be recalled below. The map W0(z) = zζ0 is

defined in terms of an endomorphism ζ0 : g0 → g0 of the horizontal subalgebra. While

the eigenvalues of ζ0 determine how the spectral flow shifts the modes of the currents, the

vector wi
0 affects only the zero-modes. In order to preserve the trivial monodromy under

rotations around the origin we will assume that W0(z) is a meromorphic function, i.e. that

all the eigenvalues of ζ0 are integer. Inserting the transformation (5.6) into the operator

product expansions (3.10) leaves one with the constraints

(ζ0)
i
j = f ik

l κkj wl
0 (5.7)

and

(W0)
i
k(z) (W0)

j
l(z)κkl = κij , f ij

k (W0)
k
l(z) = (W0)

i
m(z) (W0)

j
n(z) fmn

l. (5.8)

20We refrain from introducing a different symbol here such as ω0.
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The first equation (5.7) in fact implies that the only free parameter is the shift vector wi
0.

In the case of a semisimple Lie algebra g0 (which leads to a non-degenerate Killing form)

this argument can also be reversed and hence it allows to express wi
0 in terms of ζ0.

We would now like to argue that equation (5.7) already implies the consistency of the

spectral flow (up to the question whether ζ0 has integer eigenvalues), i.e. the validity of

the equations (5.8). Given the concrete form of W0(z), it can indeed be shown that the

two relations (5.8) follow from the equations

(ζ0)
i
kκ

kj + (ζ0)
j
lκ

il = 0 f ij
k(ζ0)

k
l = (ζ0)

i
kf

kj
l + (ζ0)

j
kf

ik
l. (5.9)

These relations are in turn just a consequence of (5.7) using the invariance of κij and the

Jacobi identity for the structure constants. Since the same idea will be used again below

let us sketch the proof of our assertion that the eqs. (5.9) imply the eqs. (5.8). First of all,

it is easy to see that one can generalize the relations (5.9) to powers of ζ0 using induction.

In the first case, this just yields an alternating relative sign, while in the second case it

establishes some kind of binomial formula. Writing W0(z) = exp(ζ0 ln z) and expanding in

powers of ln z one can then explicitly verify the equations for W0(z). Any vector wi
0 which

leads to a matrix ζ0 with integer eigenvalues under the identification (5.7) will accordingly

be referred to as a spectral flow automorphism of ĝ from now on.

Given the insights of the previous paragraphs it is now fairly straightforward to extend

the spectral flow automorphism ω : ĝ0 → ĝ0 to the full current superalgebra. To this end,

we introduce the element

ζ1 = −Ri κij wj
0. (5.10)

It is crucial to observe that this matrix satisfies the relation

(ζ0)
i
j (Rj)ac + (ζ1)

a
b (Ri)bc = (Ri)ab (ζ1)

b
c, (5.11)

an analogue of eq. (5.9). Following the discussion in the bosonic sector, we now introduce

a function W1(z) = zζ1 . Using the same reasoning as in the previous paragraph, the

equation (5.11) implies

(Ri)ab (W1)
b
c(z) = (W0)

i
j(z) (W1)

a
b(z) (Rj)bc. (5.12)

Now we can define the action of the spectral flow automorphism ω on the fermionic currents

by

ω
(
Sa

1 (z)
)

= (W1)
a
b(z)Sb

1(z), ω
(
S2a(z)

)
= S1b(z) (W 1)

b
a(z), (5.13)

where W 1 denotes the inverse of W1. Once more, consistency with the operator prod-

uct expansions of the supercurrents is straightforward to verify. The only input is the

definition (5.10) and the property (5.12).

We would also like to argue that the spectral flow symmetry is consistent with the free

fermion representation (3.23). To be more specific, we shall construct an automorphism on

the chiral algebra of the decoupled system generated by the currents Ki
B(z) and the free

fermions pa(z) and θa(z) that reduces to the expressions above if we plug the transformed

fields into the defining equations (3.23). In this context the most important issue is to
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understand how the renormalization of the metric κ → κ − γ affects the action of the

spectral flow. As a consequence of eq. (5.11) we note that

(ζ0)
i
k γkj + (ζ0)

j
k γik = tr

(
[RiRj, ζ1]

)
= 0, (5.14)

where γij = tr(RiRj), as before. Consequently, the data ζ0 which gave rise to a spectral

flow automorphism of ĝ0 above, can also be used to define a spectral flow automorphism of

the renormalized current algebra, i.e. of the algebra that is generated by Kj
B with operator

products given in subsection (3.3). Only the shift vector wi
0 of the zero modes needs a

small adjustment such that the new spectral flow action reads

ω
(
Ki

B(z)
)

= (W0)
i
j(z)Kj

B(z) + wi
B z−1 where wi

B = wi
0 + tr

(
ζ1R

i
)
. (5.15)

In order to validate that this indeed defines an automorphism we need to check the analogue

of the condition (5.7) for the new metric κ − γ. But this constraint is trivially met, using

wi
B = (κ − γ)ij κjk wk

0 . (5.16)

along with the invariance of both metrics κ and κ − γ. Note that ζ0 is not changed and

hence it has the same (integer) eigenvalues as before.

In order to obtain an automorphism which is compatible with the free field construction

we also need to introduce the transformations

ω
(
pa(z)

)
= pb(z) (W 1)

b
a(z), ω

(
θa(z)

)
= (W1)

a
b(z) θb(z). (5.17)

It is then straightforward but lengthy to check that the previous transformations define

an automorphism of the algebra generated by pa, θa and Kj
B that descends to the original

spectral flow automorphism ω of our current superalgebra ĝ. During the calculation one

has to be aware of normal ordering issues.

In conclusion we have shown that any spectral flow automorphism of the bosonic sub-

algebra of a current superalgebra (related to a Lie superalgebra of type I) can be extended

to the full current superalgebra. Furthermore, this extension was seen to be consistent

with our free fermion resolution. Let us remark that even if we start with a spectral flow

automorphism ω preserving periodic boundary conditions for bosonic currents, the lifted

spectral flow ω does not necessarily have the same property on fermionic generators. Only

those spectral flow automorphisms ω : ĝ → ĝ for which W1 is meromorphic as well seem to

arise as symmetries of WZNW models on supergroups. Nevertheless, also non-meromorphic

spectral flows turn out to be of physical relevance. They can be used to describe the twisted

sectors of orbifold theories, see section 5.4 for details.

5.3 Spectrum and correlation functions

Obviously, it is of central importance to determine the partition function and higher corre-

lators of WZNW models on supergroups. Here we shall explain how the calculation of these

quantities may be reduced to computations in the corresponding bosonic WZNW models.

For the torus partition function we will provide a full expression in terms of characters of

the (renormalized) bosonic current algebra.
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All computations in the WZNW model on type I supergroups depart from the decou-

pled theory (3.21). The interaction between bosons and fermions is treated perturbatively.

What makes this approach particularly powerful is the fact that the perturbative expansion

turns out to truncate after a finite number of terms. The order at which the truncation

occurs, however, depends on the supergroup and the correlator to be computed. As a

general rule, the number of terms to consider in the perturbative expansion increases with

the number of vertex operators that are inserted.

To begin with, let us describe the unperturbed theory (3.21) with a few concrete

formulas. As we proceed it is useful to keep in mind that solving the unperturbed theory

is a field theoretic analogue of solving the truncated Laplace operator ∆0. Fields in the

decoupled theory form a space H which is a field theoretic version of the semi-classical space

F(G). The state space H naturally factorizes into bosonic and fermionic contributions,

H =
⊕

µ∈Rep(ĝren
0 )

(
Vµ ⊗ VF

)
⊗

(
V̄∗

µ ⊗ V̄F

)
. (5.18)

For simplicity we assumed that the bosonic part has a charge conjugate modular invariant

partition function.21 The fermionic representation is unique if we restrict ourselves to

the Ramond-Ramond sector. In case applications require to include fermionic fields with

anti-periodic boundary conditions as well, they can be incorporated easily. According to

eq. (5.18), vertex operators of the decoupled theory possess a basis of the form

V a

µ;b(z, z̄) ≡ V a1,...,as

µ;b1,...,bt
(z, z̄) = Vµ(z, z̄) θa1(z) · · · θas(z) θ̄b1(z̄) · · · θ̄bt

(z̄) (5.19)

where Vµ are vertex operators in the bosonic WZNW model. We have noted before that

the free fermion theory admits a current superalgebra symmetry ĝ⊕ ĝ. The latter is given

explicitly by the formulas in section 3.3. When analyzed with respect to this current

superalgebra, the state space H assumes the form

H =
⊕

µ∈Rep(ĝ)

Hµ ⊗ H̄∗
µ (5.20)

where Hµ an H∗
µ are the Kac modules and their duals, as defined in equation (5.1).22

It should be kept in mind though that H contains an atypical sector (including, e.g.,

H0 ⊗ H̄∗
0) which is not fully reducible. Nevertheless, the zero-modes L0 and L̄0 of the

Virasoro-Sugawara fields are fully diagonalizable.

The true state space H of the interacting theory, on the other hand, is a field theoretic

version of the space F(G) in our minisuperspace theory. In particular, H agrees with H as

a graded vector space (with the grading provided by the generalized eigenvalues of L0 and

L̄0) and even as ĝ0 ⊕ ĝ0-module. But when considered as a module of the left and/or right

21In case the consistency of the bosonic theory requires to consider spectral flow automorphisms, e.g. for

non-compact groups, they should also be included in the definition of the labels µ.
22It is the dual which is relevant here since we assume the antiholomorphic current superalgebra to mimic

the differential operators (4.4), not those in (4.3). Notice that the roles of Sa
1 and S2a are exchanged in

these expressions.
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current superalgebra, H and H are fundamentally different. While, under the action of e.g.

the right moving currents, H decomposes into a sum of typical and atypical Kac modules,

H may be expanded into projectives. The corresponding multiplicity spaces, however, do

not carry a representation of the left moving currents, in contrast to what we have seen

in eq. (5.20). Instead, atypical representations of the left and right moving currents form

large non-chiral modules Î[σ] which entangle projective covers in an intricate way.23 Now

recall that the Virasoro element L0 contains the (renormalized) Casimir operator of g as a

summand and it agrees with the latter on ground states. But since our harmonic analysis

revealed that the Casimir operator may not be diagonalized in the atypical subspace of

F(G), the same must be true for the action of L0 (and L̄0) on H. This shows that

supergroup WZNW theories are always logarithmic conformal field theories.24

After these remarks, let us address the partition function of the theory and its modular

invariance. We have stressed above that H and H are isomorphic as ĝ0⊕ĝ0-modules. Hence,

the partition function of the interacting theory agrees with the partition function of the

decoupled model and both may be written as a sum over bilinears of characters of Kac

modules.25 Thereby, the partition function of WZNW models on type I supergroups takes

the form

ZG(q, q̄) = ZGB
ren (q, q̄) · ZF (q, q̄), (5.21)

i.e. it is obtained as a product of the corresponding partition functions of the (renormalized)

bosonic model with that of the free fermionic system. Each of the two factors corresponds

to a well-defined and consistent conformal field theory. This shows that our proposal for

the state space of the supergroup WZNW model yields a suitable partition function.

In theories with fermions one has to distinguish between the purely combinatorial

partition function which merely counts states and the torus vacuum amplitude which is

the relevant physical quantity. Since the fermions anti-commute, the latter requires an

insertion of the fermion number operator (−1)F+F̄ into the trace, thus turning characters

into supercharacters. In our state spaces, bosonic and fermionic states always come in pairs,

causing ZF (q, q̄) to vanish. Actually, this is the usual way in which modular invariance

manifests itself in fermionic theories. To avoid dealing with trivial quantities, one may

switch to unspecialized characters. The latter lead to a non-vanishing physical partition

function.

We claim that the expression (5.21) is the universal partition function for supergroup

WZNW models similar to the charge conjugate one in ordinary bosonic models. We will

indeed argue in the following section that this modular invariant can be used as the basic

building block to derive new, non-trivial partition functions using methods that are well-

established in purely bosonic conformal field theories.

23Note that the structure and number of ĝ-blocks and hence of the indecomposables Î[σ] in the field

theory may differ from that in the minisuperspace theory, see eq. (4.7). The relation between the two may

be established with the help of spectral flow automorphisms.
24There might exist consistent truncations to diagonalizable subsectors for low levels, see the discussion

in [37]. Such phenomena appear to be very rare, though.
25Since the Cartan subalgebra of g was assumed to be identical to the Cartan subalgebra of g0 this

statement even holds for unspecialized characters and partition functions.
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We wish to conclude this subsection with a few comments on the calculation of cor-

relation functions. We have argued above that fields in the decoupled and the interacting

theory are in one-to-one correspondence with each other. In fact, the transition from the

auxiliary space H to the proper state space H of the supergroup WZNW model is imple-

mented by a linear map Ξ̂ : H → H. The latter generalizes and extends the map Ξ that we

used in the semi-classical analysis to identify states in F(G) and F(G). Let us denote the

image of the field (5.19) under Ξ̂ by Φa

µ;b. According to our general strategy, correlation

functions in the interacting theory may be computed through

〈
Φa1

µ1;b1
(z1, z̄1) · · ·ΦaN

µN ;bN
(zN , z̄N )

〉
=

smax∑

s=0

1

s!

〈
V a1

µ1;b1
(z1, z̄1) · · · V aN

µN ;bN
(zN , z̄N ) Ss

int

〉
0
,

(5.22)

where the correlators on the right hand side are to be evaluated in the decoupled theory.

We shall show below that correlators with s ≥ smax = Nr insertions vanish so that the

summation over s is finite. Let us also recall that the interaction term is given by

Sint = − i

2π

∫
pa Ra

b(gB) p̄b dw ∧ dw̄. (5.23)

Here, the expression Ra
b(gB) should be interpreted as a vertex operator of the bosonic

WZNW model, transforming in the representation R ⊗ R∗.

There are now two computations to be performed in the decoupled theory. First of

all, we have to determine correlation functions for the bosonic fields Vµi
with additional

insertions of s vertex operators Ra
b(gB). We shall assume the bosonic WZNW model to be

solved and hence that all these bosonic correlators are known. Let us comment, however,

that the dependence of such correlation functions on the insertion points of Ra
b(gB) is

controlled by null vector decoupling equations. As usual, these can be exploited to derive

integral formulas for the required correlation functions. We shall not go into any more

detail here.

Instead, let us now comment on the second part of the computation that deals with the

fermionic sector. Since we are dealing with r chiral bc systems at central charge c = −2,

the evaluation is rather standard. According to the usual rules, non-vanishing correlators

on the sphere must satisfy #θa − #pa = 1, i.e. the number of insertions of a fixed field θa

must exceed the number of insertions of pa by one. In an N -point correlator, any given

component θa can appear at most N times. The fields pa, on the other hand, only emerge

from the s insertions of the interaction term. Hence, we conclude that all contributions to

our correlation function with s ≥ N · r insertions of Sint vanish. The non-vanishing terms

can be evaluated using that

〈 n∏

ν=1

pa(zν)
n+1∏

µ=1

θa(xµ)
〉

0
=

∏
ν<ν′(zν − zν′)

∏
µ<µ′(xµ − xµ′)

∏
ν

∏
µ(zν − xµ)

(5.24)

and a similar formula applies to θ̄a and p̄a. These expressions can be inserted into the

expansion (5.22). Thereby we obtain a formula for the N -point functions of the WZNW

model which presents it as a sum of at most N · r terms labeled by an integer s. Each
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individual summand involves an integration over s insertion points wi. The corresponding

integrand factorizes into free field correlators of the form (5.24) multiplied with a non-trivial

(N + s)-point function in the bosonic WZNW model for the group GB .

Let us point out that for a given choice of N fields, the perturbative evaluation of the

correlator may truncate way before we reach smax. An extreme example appears when all

the fields Φµi
= Ξ̂Vµi

, i = 2, . . . , N, are images of purely bosonic fields Vµi
while the first

field contains the maximal number of fermionic factors, both for left and right movers. In

that case, only the term with s = 0 contributes and hence these fields of the WZNW model

on the supergroup possess the same correlation functions as in the bosonic WZNW model,

i.e.

〈
Φ1,2,...,r

µ1;1,2,...,r(z1, z̄1)Φµ2(z2, z̄2) · · ·ΦµN
(zN , z̄N )

〉
=

〈
Vµ1(z1, z̄1)Vµ2(z2, z̄2) · · ·VµN

(zN , z̄N )
〉
0

(5.25)

where the correlation function on the right hand side is to be evaluated in the bosonic

WZNW model. The result is a direct analogue of the corresponding formula (4.26) in the

minisuperspace theory.

5.4 Some comments on non-trivial modular invariants

During the course of the previous sections we frequently assumed that the bosonic subgroup

GB ⊂ G was compact and simply-connected. On a technical level, this condition is required

in order to render the matrix R(gB) well-defined which entered the expression for the

differential operators implementing the isometries of G on the function space F(G). On

the other hand this choice automatically limited our considerations to WZNW models with

(the analogue of a) charge conjugate modular invariant. In this subsection we would like

to sketch how such a restriction may be overcome.

Let us recall the situation for bosonic WZNW models first. It is well-known that a

non-simply-connected group manifold G0 can be described geometrically as an orbifold

G̃0/Γ where G̃0 is the universal covering group and Γ ∼= π1(G0) ⊂ Z(G̃0) is a subgroup of

its center. The simplest example is SO(3) = SU(2)/Z2. In conformal field theory, orbifolds

of the previous type are implemented by means of a simple current extension of the theory

with charge conjugate modular invariant [66] (see also [67]). This construction of the

G0 WZNW model rests on the fact that the G̃0 model contains sufficiently many simple

currents, one for each element in the center Z(G̃0). Incidently, these are in one-to-one

correspondence with (spectral flow) automorphisms of the current algebra ĝ0. Such simple

current extensions exhaust all modular invariants related to the current algebra ĝ0, apart

from some exceptional cases at low levels.

Now it has been shown in [68] that the global topology of a Lie supergroup is completely

inherited from that of its bosonic subgroup. Consequently, given a supergroup G with

bosonic subgroup G0 = G̃0/Γ, there exists a covering supergroup G̃ with bosonic subgroup

G̃0, and one has G = G̃/Γ. Note that central elements in G̃0 are also central in G̃. Having

constructed the WZNW model on the covering supergroup G̃, we would like to divide

by Γ. But, as we have just stated, elements of Γ can all be identified with elements in

the center of the bosonic subgroup G̃0. Therefore, they label certain simple currents of
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the G̃0 WZNW model. As indicated in the previous paragraph, we may think of these

simple currents as (equivalence classes of) spectral flow automorphisms of ĝ0. According

to the results of subsection 5.2, all such spectral flow automorphisms may be extended

from ĝ0 to the current Lie superalgebra ĝ, in a way that is even consistent with the free

fermion construction. Consequently, the elements of our designated orbifold group Γ label

a certain set of spectral flow automorphisms of ĝ. It is the action of these spectral flow

automorphisms that one has to use in order to construct the orbifold CFT belonging to

the supergroup G = G̃/Γ.

Our discussion so far has been fairly abstract and we would like to flesh it out a bit

more. Actually, the details of the orbifold construction are not much different from what

is done in bosonic models. For simplicity, let us assume that Γ is cyclic and of finite order.

We shall denote the generating element by γ. In order to illustrate the relation between

orbifolds and spectral flow automorphisms, we depart from the conventional orbifold ap-

proach. Namely, we include (chiral) twisted sectors on which the supercurrents X satisfy

boundary conditions of the form

X(e2πiz) =
(
γ(X)

)
(z). (5.26)

There exists a basis Xσ, on which γ acts diagonally as a multiplication with some phase

exp(2πiγσ). If γσ is an integer, then Xσ has integer moding in the twisted sector, oth-

erwise its modes are rational. All these twisted sectors emerge by acting with certain

(meromorphic or not) spectral flow automorphisms on the untwisted representations (see

subsection 5.2). The discussion of the previous paragraph supplied us with the relevant set

of spectral flow automorphisms and hence with a list of chiral sectors to be incorporated in

the construction of the G = G̃/Γ orbifold theory. Sectors of the full non-chiral theory are

obtained by independent action of spectral flow automorphisms on left and right-movers in

the parent theory on G̃. Therefore, even meromorphic spectral flows lead to new non-chiral

sectors, though these are put together from untwisted representations of the left and right

movers. All this has been worked out for many interesting bosonic models, such as e.g. the

SO(3) = SU(2)/Z2 WZNW model. WZNW models on non-simply-connected supergroups

are no harder to deal with.26

Let us finally comment on the connection of the algebraic orbifolds with the Lagrangian

picture. Looking at our free field resolution (3.5) one might have had the naive idea to

replace the bosonic model by its orbifold and then to add fermions and interaction terms

in the same way as before. But this is not at all what we suggest to do. In particular, the

orbifold group Γ need not be a symmetry of the interaction term if there is no action on the

fermions. Even worse, the vertex operator Ra
b(gB) occuring in the interaction may not be

part of the spectrum of the purely bosonic WZNW model. As a consequence, the perturbed

correlation functions with insertions of this operator are not well-defined. This happens,

for example, if we try to supersymmetrize the bosonic group SO(3) × U(1). The fermions

26The SO(3) theory also shows that the orbifold construction might suffer from obstructions, depending

on the choice of the level. A more detailed treatment of such issues for supergroup orbifolds is left for future

work.
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of the extended model with su(2|1) symmetry transform in the spin 1/2 representation

of SU(2) which does not descend to a representation of SO(3) = SU(2)/Z2. Hence, it is

absolutely crucial to depart from the full SU(2|1) WZNW model and to divide the full

orbifold action on both bosonic and fermionic variables.

6. Lessons for other logarithmic CFTs

Various logarithmic conformal field theories have been considered in the literature. The

best studied examples are the triplet models in which the conformal symmetry is extended

by a triplet of currents, each having spin h = 2p − 1 [69]. For most of these algebras

only chiral aspects have been investigated so far, but in case of p = 2, Gaberdiel and

Kausch have been able to come up with a consistent local theory [11]. The extended chiral

symmetry of the triplet models is denoted by Wp,1. The latter are believed to be part of a

family of more general W-algebras Wp,q where p and q are co-prime. All of these possess

interesting indecomposable representations. Their representation theory is particularly well

understood for q = 1, see [14] and references therein.

This final section has two aims. First of all we would like to illustrate that the existing

results on the representation theory of Wp,1-algebras and the local triplet model (for p = 2)

fit very nicely into one common picture with the logarithmic WZNW models on type I

supergroups. But given the remarkable progress with the latter, and in particular with the

construction of infinitely many families of new local non-chiral models, our results lead to

a number of interesting predictions on Wp,q-algebras and the associated local logarithmic

conformal field theories.

6.1 Chiral representation theory

Let us begin this subsection by reviewing some results on the representation theory of

Wp,1 = W(p) (see [14] and references therein). This chiral algebra is known to admit 2p

irreducible highest weight representations V±
s where s = 1, . . . , p. While V±

p do not admit

non-split extensions, all other 2(p − 1) representations appear in the head of the following

indecomposables,27

R±
s : V±

s → 2V∓
p−s → V±

s (6.1)

where s runs from s = 1 to s = p−1. Hence the representations V±
p can be considered typi-

cal whereas all others are atypical.28 Moreover, the indecomposables R±
s are the projective

covers of the atypicals V±
s and play the role of the representations P in section 2.2.3. The

typical modules V±
p are projective as well, in agreement with results on the fusion for W(2)

representations, see [70]. The fusion rules of Wp,q-models have recently been addressed

in [16].

27These diagrams have to be read as follows: To the right we write the maximal fully reducible submodule.

Everything left of the rightmost arrow describes the quotient module of the original module with respect

to the submodule mentioned before. One can then proceed iteratively to define the whole diagram.
28We use the qualifiers “atypical” and “typical” only to clarify the analogy to the supergroup WZNW

models. In contrast to the latter, the atypical representations are obviously the generic ones for the algebra

W(p).
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The representation theory of W(p)-algebras also contains analogues of our Kac modules

for atypical representations. These have the form

K±
s : V±

s → V∓
p−s (6.2)

where s = 1, . . . , p − 1. In view of the role they are going to play we will simply refer

to the representations K±
s as “Kac modules” as well.29 They are obtained as quotients

of the projective covers R±
s . For the typical representations V±

p , the associated irre-

ducibles, “Kac modules” and projective covers all coincide. In this sense, we shall also

write K±
p = V±

p = R±
p , just as for typical representations of Lie superalgebras. Further-

more, among the quotients of the projective covers one can also find 4(p − 1) “zig-zag”

modules, containing three irreducible representations each. It seems likely, that these are

just the first few examples among an infinite series of zig-zag representations of W(p), in

close analogy to representations of the Lie superalgebra gl(1|1) (see e.g. [72]). The main

difference between gl(1|1) and W(p) zig-zag modules is that the constituents of the former

are pairwise inequivalent. Zig-zag modules of W(p), on the other hand, are built from a

pair of irreducibles, each appearing with some multiplicity. This opens the possibility to

close zig-zag modules of W(p) into rings. Representations of all these different shapes were

found and investigated for the quantum groups [73, 74] which are dual to W(p), in the

sense of Kazhdan-Lusztig duality.

Let us also compare some further properties of W(p)-modules with those we discussed

for Lie superalgebras of type I. For example, we have pointed out that all projective modules

of type I superalgebras possess a “Kac composition series”. The same is true for the

projective covers R±
s ,

R±
s : K±

s → K∓
p−s (for s < p) , R±

p = K±
p . (6.3)

Moreover, we also observe that the multiplicities in the “Kac composition series” of inde-

composable projective covers (reducible and irreducible) and those of irreducible represen-

tations in the composition series of “Kac modules” are related by

(Rµ : Kν) = [Kν : Vµ]. (6.4)

This establishes an analogue of the reciprocity theorem (2.11) that has been an important

ingredient in our description of supergroup WZNW models and, in particular, in exhibiting

their modular invariance.

The agreement between algebraic structures in the representation theory of Lie super-

algebras and of symmetries in minimal logarithmic conformal field theories is remarkable.

But let us think ahead and see what Lie superalgebras may teach us for future studies

of indecomposable W-algebra representations. While irreducible representations and their

projective covers are certainly central objects for all Lie superalgebras, some of their prop-

erties may differ considerably from what we have seen in the case of type I. We have

29Using the analogy to the Kazhdan-Lusztig dual quantum group, they have been called Verma modules

in [71].
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pointed out already that the existence of a “Kac composition series” (or a similar flag) for

projectives and the reciprocity property (2.11) do not hold for more general Lie superalge-

bras. Hence, these features of W(p)-modules should not be expected to carry over to more

general W-algebras either. In fact, numerical results of [75] may indicate that violations

even occur for Wp,q with p, q 6= 1. Furthermore, the tensor products for irreducible repre-

sentations of Lie superalgebras can develop a remarkable complexity. In this sense, the Lie

superalgebra gl(1|1) is rather well-behaved. Representations of psl(2|2), for example, are

much less tame. In particular, tensor powers of its adjoint representation lead to an infinite

series of indecomposables (see [72] for details). The similarities between representations of

gl(1|1) and Wp,1 suggest that the latter may also be rather unusual creatures in the zoo of

W-algebras. In fact, when it comes to the features of fusion, the algebras Wp,q may have

much more generic properties, resembling very closely those of psl(2|2).30

6.2 Local logarithmic conformal field theories

Regarding the construction of local field theories, the progress with WZNW models on

supergroups has been significantly faster than for minimal logarithmic CFTs. In fact, only

the minimal triplet model associated with W(2) has been constructed in all detail [11].

Imposing locality constraints on correlation functions, the state space H of this model was

shown to have the form

H = I1 ⊕
(
V+

2 ⊗ V̄+
2

)
⊕

(
V−

2 ⊗ V̄−
2

)
. (6.5)

Here, V±
2 are the typical modules of W(2), in view of their conformal dimensions previously

also denoted by V−1/8 and V3/8, and I1 is a complicated non-chiral indecomposable (denoted

by R in [11]) which was obtained originally as a certain quotient of the space
(
R+

1 ⊗R̄+
1

)
⊕(

R−
1 ⊗ R̄−

1

)
. The module I1 is known to possess the following composition series

I1 :
(
V+

1 ⊗V̄+
1

)
⊕

(
V−

1 ⊗V̄−
1

)
→ 2

(
V+

1 ⊗V̄−
1

)
⊕2

(
V−

1 ⊗V̄+
1

)
→

(
V+

1 ⊗V̄+
1

)
⊕

(
V−

1 ⊗V̄−
1

)
, (6.6)

where we used the correspondence V+
1 = V0 and V−

1 = V1 for the atypical irreducibles of

W(2). When acting with elements of either the left or right chiral algebra only, H decom-

poses into a sum of projectives, each appearing with infinite multiplicity. The individual

multiplicity spaces cannot be promoted to representation spaces of the commuting chiral

algebra, but they come equipped with a grading that is given by the (generalized) eigenval-

ues of L0 or L̄0. When considered as graded vector spaces, they coincide with the graded

carrier spaces of irreducible representations. All this is very reminiscent of what we found

in eq. (4.6) while studying the harmonic analysis on supergroups.

Carrying on with the comparison between the triplet model and WZNW models on

supergroups, we also observe that the composition series (6.6) of the module I1 agrees with

that of the module
(
K+

1 ⊗ K̄+
1

)
⊕

(
K−

1 ⊗ K̄−
1

)
. Hence, the partition function of the triplet

30A certain similarity between the representation theory of Wp,q (or rather its dual quantum group) and

psl(2|2) is suggested by the structure of their respective projective covers, cf. e.g. figure 7 of [76] with eq.

(2.12) of [77].
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Figure 1: The structure of the non-chiral representation Is.

model can be expressed as

Z(q, q̄) =
∑

i=1,2

∑

η=±

χKη
i
(q) χ̄Kη

i
(q̄). (6.7)

This result is reminiscent of what we found for supergroup WZNW models in section 5.3.

Note that the modular transformation behaviour for characters of Kac modules is rather

simple which makes it easy to check that Z(q, q̄) is modular invariant. In comparison, the

transformation behaviour of characters belonging to atypical irreducible representations of

W(2) is rather involved [70], just as for current superalgebras.

The striking similarities between the local triplet theory and the harmonic analysis

on supergroups suggest some far reaching generalizations, in particular concerning the

state space of a wide class of local logarithmic conformal field theories. Let us denote

the irreducible representations of some chiral algebra W by Va and their projective covers

by Pa. For typical representations the latter agree (by definition) with the irreducibles.

We also introduce the symbol Va when Va is considered merely as an L0-graded vector

space. Given this notation, we propose that a local logarithmic conformal field theory with

symmetry W can be constructed on the state space

H =
⊕

a

Va ⊗ P̄a. (6.8)

Our proposal describes the state space of the conjectured local theory as a graded represen-

tation space for W̄ . The extension to the full W ⊗ W̄ is severely constrained by requiring

symmetry with respect to an exchange of left and right chiral algebras. Concerning the im-

plications for W(p)-models it is interesting to observe that the same structures were found

in the regular representation of the dual quantum group, see [71], page 24, and compare

with eq. (2.19) in [37]. Let us point out that local theories may probably also be built on

other state spaces. Examples are given by the orbifold models we described in section 5.4

or by some exceptional truncations of WZNW models on simply connected Lie supergroups

(see [37] for a few examples).

Before we conclude we would like to go one step beyond the previous analogy and to

propose a more detailed conjecture for the natural state space of the W(p) triplet models
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for arbitrary p. In a straightforward extension of the result (6.5) for p = 2 we believe that

a local theory may be built on the space

H =
⊕

s 6=p

Is ⊕
⊕

η=±

Vη
p ⊗ V̄η

p . (6.9)

The non-chiral indecomposable representations occurring here have the composition series

Is :
(
V+

s ⊗V̄+
s

)
⊕

(
V−

p−s⊗V̄−
p−s

)
→ 2

(
V+

s ⊗V̄−
p−s

)
⊕2

(
V−

p−s⊗V̄+
s

)
→

(
V−

p−s⊗V̄−
p−s

)
⊕

(
V+

s ⊗V̄+
s

)

which coincides with the composition series of
(
K+

s ⊗K̄+
s

)
⊕

(
K−

p−s ⊗K̄−
p−s

)
. Consequently,

our proposal is manifestly modular invariant since the partition function can be written

as a sum over all “Kac modules”, just as in eq. (6.7). Figure 1 provides an alternative 2-

dimensional picture of the indecomposables Is. In this form the similarities with analogous

pictures for gl(1|1) and sl(2|1) [36, 37] and for the quantum group dual of W(p)-models [71]

are clearly displayed.

The particular relevance of projective modules for local bulk theories is one of the main

outcomes from the study of WZNW models on supergroups, see also [36, 24, 37]. Their

role for logarithmic extensions of minimal models was also emphasized in [76, 78], mostly

based on studies of the dual quantum group. It seems worth pointing out, though, that for

quotients of supergroups, projective modules might not play such a prominent role, even

though some of them are likely to be logarithmic as well. Similarly, boundary spectra in

logarithmic conformal field theories are known to involve atypical irreducibles as well as

projectives. For the triplet model, boundary conditions with an atypical irreducible spec-

trum of boundary operators were exhibited in the recent work of Gaberdiel and Runkel [18].

Studies of branes on supergroups confirm the existence of such boundary spectra and they

provide a beautiful geometric explanation [79].

7. Outlook and open questions

In our paper we presented the main ingredients for a complete solution of arbitrary super-

group WZNW models based on basic Lie superalgebras of type I. All our results relied on

a free fermion resolution of the underlying current superalgebra which allowed to keep the

bosonic subsymmetry manifest in all expressions we encountered, i.e. in action functionals,

representations, correlation functions and other quantities. On the level of the Lagrangian

we showed that the original WZNW Lagrangian could be written as a sum of a WZNW

model for the bosonic subgroup with renormalized metric and possibly a dilaton, the action

for a set of free fermions and an interaction term which couples the fermions to a vertex

operator of the bosonic model. The usefulness of this construction has also been demon-

strated in the full quantum theory, e.g. when we reconstructed the current superalgebra in

terms of the corresponding bosonic current algebra and free fermions.

In order to solve the WZNW model we first focused on its semi-classical, or small

curvature limit which allowed to reduce the construction of the space of ground states

to a problem in harmonic analysis on a supergroup. We could confirm previous observa-

tions [59, 36, 24, 37] that the space of functions splits into two qualitative very different
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sectors. First of all, there exists a typical sector which decomposes into a tensor product of

irreducible typical representations under the action of the supergroup isometry g ⊕ g. On

this subspace, the Laplacian is fully diagonalizable and its eigenvalues are determined by a

specific quadratic Casimir of g. In addition, the space of functions on a supergroup always

exhibits an atypical sector consisting of projective covers entangled in a complicated way

such that the resulting non-chiral modules cannot be written as (a direct sum of) tensor

product representations. In this sector the Laplacian is not diagonalizable and the necessity

for a non-trivial entanglement may eventually be traced back to the fact that the left and

right regular action lead to the same expression for the Laplacian. We wish to emphasize

that our derivation of the spectrum has been very general and just relied on the validity

of a reciprocity theorem proven by Zou and Brundan [49, 50].

Starting from this semi-classical truncation it has been argued that all its interesting

features persist in the full quantum theory. In particular, the full state space of the WZNW

model is still composed of a typical and an atypical sector. Again, the representations in

the latter do not factorize and the dilatation operators L0 and L̄0 may not be diagonalized.

Since the vacuum representation is always atypical this automatically implies the existence

of a logarithmic partner of the identity field and makes supergroup WZNW models genuine

examples of logarithmic conformal field theories.

It should be noted that, in comparison to ordinary free field constructions [38 – 43]

which are based on a choice of an abelian subalgebra, our free fermion resolution is much

easier to deal with. In particular, the representations of the current superalgebra obtained

from the generalized Fock spaces (5.1) are typically irreducible. This observation lets

us suggest that these representations are the proper generalization of Kac modules in

the infinite dimensional setting. Furthermore, there was no need of introducing various

screening charges and BRST operators, a simplifying feature that reflects itself in the

calculation of correlation functions. The latter could be reduced to a perturbative but

finite expansion in terms of correlation functions in the product of a purely bosonic WZNW

model with renormalized metric and a theory of free fermions.

Finally, we commented on possible partition functions and we explained how they are

constructed as a product of partition functions for the constituents in our free fermion

resolution. This rather simple behavior is rooted in the fact that traces are insensitive

to the composition structure of representations. Hence, the full WZNW theory possesses

the same partition function as the decoupled free fermion theory in which products of

(reducible) Kac modules appear instead of projective covers. Taking this assertion for

granted, the torus modular invariance of our theory is satisfied automatically. It might

be helpful to add that torus partition functions of many non-rational bosonic conformal

field theories, e.g. of Liouville theory or of the H+
3 model, are equally insensitive to the

interaction. This does certainly not imply that the theories are trivial, neither in case of

non-rational conformal field theories, nor for WZNW models on supergroups.

In the last section of this work we placed our new results on chiral and non-chiral

aspects of supergroup WZNW models in the context of previous and ongoing work on other

logarithmic conformal field theories, in particular on logarithmic extensions of minimal

models. The similarities are remarkable and provide some novel insight that helps to
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separate generic properties of logarithmic conformal field theories from rather singular

coincidences. As an application of the analogies we conjectured a precise formula for the

state space of a fully consistent local theory based on an arbitrary chiral algebra. It adopts

a particularly nice shape for the minimal logarithmic W(p)-theories.

Working with supergroup WZNW models has two important advantages over the con-

sideration of non-geometric logarithmic conformal field theories. Concerning the study of

chiral aspects, the close link between the current superalgebra ĝ and its horizontal subsu-

peralgebra g provides a rather strong handle on the representation theory of W = ĝ. In

fact, since the representation theory of g is under good control, the same is true for its

affine extension ĝ. Even though we have not really pushed this to the level of mathematical

theorems, there is no doubt that rigorous results can be established along the lines of our

discussion. For some particular examples, this has been carried out already [36, 24, 37].

The second advantage of supergroup WZNW models is the existence of an action principle.

The latter is particularly powerful when it comes to the construction of local logarithmic

field theories, a subject that has been notoriously hard to address for logarithmic extensions

of minimal models. In fact, we have seen in section 5.3 that the action leads to a rigorous

tool for constructing bulk correlation functions. As such, it has already been exploited in

the construction of correlation functions for the GL(1|1) WZNW model [36].

The present work admits natural extensions in several directions. Among these, the

problem of finding concrete expressions for the full correlation functions or, at least, con-

formal blocks is probably the most urgent. Another issue of considerable significance is

the extension of our ideas to world-sheets with boundaries or, in string theory language,

the discussion of D-branes. In this context it seems necessary to obtain a better handle

on modular transformation properties of characters, including those of irreducible atypical

representations [13]. We hope that our work will be helpful in deriving new character for-

mulas along the lines of [24, 37]. It would also be interesting to work out in greater detail

the solution of WZNW models with non-trivial modular invariants.

In order to acquire more experience with supersymmetric σ-models and for various

applications it would be desirable to extend our study to supercoset models. In contrast

to bosonic models, there is considerably more freedom in choosing how to gauge. Besides

gauging the standard adjoint action, as is done in [80 – 83] there are many cases in which

purely one-sided cosets are known or believed to be conformally invariant [19 – 22]. Those

latter cases are relevant for the description of AdS-spaces, projective superspaces and even

flat Minkowski space. It is worth noting that the harmonic analysis on coset models G/H

with H a bosonic subgroup acting from the right, g ∼ gh, can easily be obtained from our

results, see section 4.2 and especially eq. (4.8) (cmp. also [84]). All the additional input

required is the branching of g0-modules into h-modules. Even before carrying out any

such decomposition explicitly, we may conclude from eq. (4.8) that the resulting g-modules

are all projective. This particularly applies to all generalized symmetric spaces which are

relevant for the description of AdS-spaces. Let us stress, however, that cosets G/H by some

non-trivial supergroup H may behave differently. In fact, some simple examples show how

even atypical irreducibles may emerge in their spectrum.

Apart from these structural and conceptual issues we also expect our work to have
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concrete implications, e.g. in string theory. Let us recall that it is not difficult to write

down classical σ-models which can be used to describe string theory on AdS-spaces with

various types of background fluxes for instance [19, 85]. But for a long time it has not been

clear how to quantize these field theories while keeping the target space supersymmetry

manifest. It was only recently that the pure spinor approach closed this gap to some

extent [86, 87]. Although substantial progress has been made on certain aspects of the

pure spinor formulation, there exist a variety of open conceptual issues, in particular when

curved backgrounds are involved. It was proposed to overcome some of them through a

reformulation in terms of supergroup WZNW models [88]. The ideas presented above may

help to gain more control over the relevant models.

For a complete picture we also need to solve WZNW models beyond Lie supergroups

of type I. These include, in particular, supergroups of type II where the fermions occur

in a single multiplet of the bosonic subgroup. Structurally, type II implies that there is

no natural Z-grading anymore which is consistent with the intrinsic Z2-grading of the un-

derlying Lie superalgebra. This issue concerns the two series B(m,n) = osp(2m + 1|2n)

and D(m,n) = osp(2m|2n) of Kac’ classification [46] which e.g. constitute the isome-

tries of superspheres S2n+m−1|2n [5, 89]. Moreover, these series include the special cases

D(2, 1;α) and D(n+1, n) which have been shown [22] to have similarly exciting properties

as A(n, n) = psl(n+1|n+1) [23]. Let us note that the WZNW models based on the family

of exceptional Lie superalgebras D(2, 1;α) are also relevant for a manifestly supersymmet-

ric description of string backgrounds involving AdS3×S3×S3. Since type II superalgebras

do not admit a canonical (covariant) split of fermionic coordinates into holomorphic and

antiholomorphic degrees of freedom, they require a rather significant extension of the above

analysis. Incidently, the same is true for the representation theory of type II superalgebras

which is considerably more complicated than in the type I case [51]. We hope to return to

these issues in future work.
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